CQC stove set up for testing under the LEMS hood

ARC is investigating how to optimize the performance of the SSM Jet-Flame in the CQC earthen brick stove. Forty six thirty-minute ISO 19867 Water Heating Tests were completed under the LEMS hood at seven fan speeds. Two 4 cm x 4 cm douglas fir sticks were burned side by side. Five liters of water in a seven liter pot were heated, and the CQC pot skirt was used in all tests.


Tier 4 ISO Voluntary Performance Targets:

  • Thermal Efficiency           40% to 49%
  • CO                                     <4.4g/MJd
  • PM2.5                               <62mg/MJd

Time to boil: The time to boil decreased with an increase in fan speed.

Thermal efficiency: The thermal efficiency stayed close to 35% in most cases and was higher at 3 and 8 volts (around 40%).

Firepower: The firepower rose to 6.8kW at 8 volts, starting at 2.6 kW at 2 volts.

Emissions of Carbon monoxide: Generally emissions decreased with increasing fan speed.

Emissions of PM2.5: 7 and 8 volts scored the best, at half of the result of 5 volts.

Combustion chamber temperatures: The mid combustion chamber temperatures rose with increases in fan speed from 382C to 730C.

Excess air:  Lambda fell as voltage increased from 4.1 to 1.9.

We recommend that the project do enough field testing to determine what settings are preferable to local cooks, remembering that higher voltages consume more power. In this way, the Jet-Flame/CQC stove can be tailored to regional cooking, keeping in mind the power output and use patterns of the CQC photovoltaic solar system.

Here’s what the flame looks like when varying the voltage:

Kabanyana Murabukirwa Domina and Jean Marie Vianney Kayonga in Rwanda
Kabanyana Murabukirwa Domina and Jean Marie Vianney Kayonga in Rwanda
Kabanyana Murabukirwa Domina and Jean Marie Vianney Kayonga in Rwanda

One of the roles of the ARC engineer is to give accurate technical information to the in-field decision makers who are directing the stove project. The folks on the ground have to make sure that cooks really like the stove, that the price is market based, that manufacturing is arranged for, etc. ARC engineers and the field team work closely together as the project evolves.

A New Project in Rwanda

In Rwanda, Kabanyana and Jean-Marie and their NGO, ENEDOM, are working with C-Quest Capital and ARC on a carbon credit supported Jet-Flame project. We met Jean-Marie through the internet and realized that he is well known in the sector. In fact, he knows many of our friends in Africa. Dr. Dan Lieberman at Global Health Labs sent Jean-Marie twenty Jet-Flames, and he showed them around to many of organizations, like the World Bank, that have large projects in the country.

Real World Use Guides Product Improvement

Moving the Jet-Flame to the side of the CQC stove
Moving the Jet-Flame to the side of the CQC stove

When we envisioned the Jet-Flame we imagined that it would be inserted into the fuel door of a Rocket stove. Mr. Shen at SSM directed the effort to manufacture the Jet-Flame and it includes a beautiful stainless steel stick support that also protects the fan. However, it only took several weeks of trails for ENEDOM to make a strong recommendation to move the Jet-Flame to the side of the CQC stove. Cooks in their homes were accidentally burning up the cord!

We gratefully thank ENEDOM for helping us make fewer mistakes. It’s another great example of trying to make sure that reality is in the product.

cover of Clean Burning Biomass Cookstoves 2nd edition
Click here to download the free pdf file (16mb)

If stoves pollute in the lab, they certainly will in the field. We estimate at least 3 times more. Commercially available biomass cookstoves that meet WHO standards are very rare. ARC continues to be committed to doing research and development to help to get the needed new stoves to market so that field studies will show success in sales, protecting health, saving wood, and making cooks happy. We believe that sharing what we learn is very important! So, we updated our “textbook” and it’s available for free here. The chapters have been updated and rewritten to try and share everything that we have learned in the lab in the last five years.


Here are some highlights:

  • With clean outdoor air, doubling the air exchange rate halves the concentrations of PM and CO in the kitchen.
  • Using an EPA model of Oakridge, Oregon, the outdoor air concentration of PM2.5 would only be increased from 13.1 μg/m3 to 13.3 μg/m3 if homeowners used an ISO Tier 4 PM2.5 cooking stove.
  • A catalytic converter works well with gases (30-95% reduction of CO) but not with smoke (30-40% reduction of PM2.5) (Hukkanen et al., 2012).
  • We think that the Harris TLUD is perhaps the first “close to optimal” cookstove. It scored 0.7mg/minute PM2.5 with pellets at Lawrence Berkeley National Laboratory. It has a 3 to 1 turn down ratio. Large natural draft static mixers create thorough mixing. Decreasing primary air reduces the rate of reactions (production of wood gas) if the air/fuel mixture becomes too rich. A stationary fan blade spins the flame for longer dwell time. And cooks at ARC love to use it.
  • When carefully tested at ARC, the SSM Jet-Flame in the CQC earthen stove scored Tier 4 for thermal efficiency, CO, and PM2.5.
  • Renewably harvested biomass can be a carbon neutral energy source when burned very cleanly.

We are getting closer to practical solutions! The ones we know about are in the book.

Many years ago, Kirk Smith hired Aprovecho to help Rob Bailis from U. C. Berkeley update and add emissions to the Water Boiling Test in the 1985 International Testing Standards. The Water Boiling Test (WBT) measured in the lab how much wood was used at full power and when simmering water. The writers of the International Testing Standards defined the purpose of the WBT as: “While it does not correlate to actual stove performance when cooking food, it facilitates the comparison of stoves under controlled conditions with relatively few cultural variables.”

The 1985 Kitchen Performance Test (KPT) measured fuel use in actual households, and the Controlled Cooking Test (CCT) was a bridge between the WBT and the KPT. ARC uses the Controlled (or Uncontrolled) Cooking Test to develop stoves with local committees of all stakeholders, as recommended by Sam Baldwin. In this test, locals cook with their own fuel, pots, and cooking practices, hopefully at Regional Testing and Knowledge Centers under the total capture emissions hood. Using the WBT in the lab has been a good tool for ARC to improve heat transfer and combustion efficiency. The cooks, marketers, manufacturers and funders in the project have to make the stove. It must work for users. They are experts.

We now use the new, updated Water Heating Test (ISO 19867) to improve heat transfer and combustion efficiency in the lab and it’s great. We are directed to try to use the type of wood, pot, and cooking practices from the intended project location. ISO 19867 also has us test the prototypes at high, medium, and low power to learn more about performance. As said, there are many other variables that can only be learned from the local cooks and everyone involved in the project. How much the can stove cost, that chapatis have to be toasted in the fuel door, that cooks in southern India sit cross legged so the stove must be pretty short, etc. is information that is obviously necessary and field based. The idea is that lab tests inform the prepared mind of the engineer who then works hand in glove with the project stakeholders in their location to make an effective product.

Kelsey Bilsback from Colorado State University advised that lots of times stoves in actual use are operated at exceedingly high fire powers. We agree! When applicable we use very high power (and relatively untended fires with sticks gathered from the forest). We are trying to find out whether a biomass stove burning found fuels can be clean burning at the equivalent of 85 MPH.

Thanks, Kelsey! Good idea!