Pot Skirts – basic theory

Dr. Sam Baldwin describes the use of a pot skirt in his book “Biomass Stoves: Engineering Design, Development, and Dissemination (1987).” Changes in the length and diameter of the channel gap (between the pot and the interior of the skirt) result in dramatic changes in heat transfer efficiency.
“In fact, the channel efficiency, defined as the fraction of the energy in the hot gas entering the channel that is transferred to the pot, is extremely sensitive to changes in the channel gap. For a 10cm long channel, the channel efficiency drops from 46% for an 8mm gap to 26% for a 10cm gap. Thus the stove and pot dimensions must be very precisely controlled.” (pg. 45)
If stoves are to be compared, these types of variables must be controlled. The use of a standard pot, or pots, without pot skirts will result in performance scores that are significantly reduced. If a pot skirt is used on testing pots it should be identical in all aspects. Again, the use of a standard pot(s) seems to be required.
Could this research be applied to residential or commercial use on conventional stoves for heat sensitive recipies such as making a tomato sauce? My thinking is to allow for a lower bottom surface temperature by utilizing the sides of the pot to maintain the same amount of heat transfer. Thus making it less likely to burn a sauce for example.