Posts

link to Rocket Stove 2020 YouTube video

How can burning wood, agricultural waste or even cow dung be a carbon neutral energy source? How do you start a fire without making a lot of smoke? How can a metal skirt around a cooking pot help with fuel efficiency? Dean Still has the answers for you in this new video.

Find out more about the Jet-Flame combustion accessory used in this video at www.jet-flame.com.

YouTube Video explains the importance of mixing for clean combustion

In this video, Dean Still explains why mixing air into flame is important for cleaner combustion. He uses several Rocket Stoves to demonstrate the effects of both natural draft and forced draft secondary air jets. Which style is more effective? Watch to find out!

For a simple way to add mixing to a Rocket Stove, check out the Jet-Flame.

Sad cooking pot on a stove
Two cooking pots
Mind the Gap!

Here are the TLUD (Top-Lit Up Draft Stove) derived heat transfer principles that ARC designers use when designing and improving stoves. They are just as important for Rocket stoves as TLUDs:

T: The temperature of the hot gas contacting the pot or griddle should be as hot as possible.

A: Expose as much of the surface area of the pot or griddle to the hot gases as practical.

R: Increasing heat transfer by radiation is important. Move the zone of combustion as close to the surface to be heated without increasing harmful emissions.

P: Optimize the proximity of the hot gases to the pot or griddle by reducing the channel gap without reducing the velocity of the gases. Reduce the thermal resistance with appropriately sized channel gaps under and at the sides of the pot. Match the firepower to the channel gap size and to the size of the pot or griddle.

V: In convective heat transfer, the primary resistance is in the surface boundary layer of very slowly moving gas immediately adjacent to a wall. Increase the velocity of the hot gas as it flows past the pot without reducing the temperature of the gases. As a rule of thumb, heat transfer efficiency can double when the velocity of the hot gases also doubles (N. MacCarty, et al, 2015).