From The WHO on Lower Emission Solid Fuel Stoves

In 2014, the World Health Organization (WHO) issued the first-ever health-based guidelines on clean fuels and technologies for household cooking, heating and lighting: INDOOR AIR QUALITY GUIDELINES: HOUSEHOLD FUEL COMBUSTION 2014

C:\Users\Owner\AppData\Local\Packages\Microsoft.Windows.Photos_8wekyb3d8bbwe\TempState\ShareServiceTempFolder\image (20).jpeg
Adding forced draft and chimneys to biomass cookstoves helps to meet WHO IAQ guidelines

From section 5.4.1 Roles of clean fuels and lower emission solid fuel stoves

“As recognized in these guidelines, and specifically in Recommendation 2, which addresses policy during transition, improved solid fuel stoves will continue to make an important contribution to the needs of a substantial proportion of lower income and rural homes where primary use of clean fuels is not feasible for some time to come. Work to develop substantially improved solid fuel stoves should continue in parallel with, but not hinder or displace, efforts to encourage transition to clean fuels. The contribution of solid fuel stoves to the mix of devices and fuels promoted will depend on the completeness of combustion that can be achieved when such technologies are in everyday use (as demonstrated through emissions testing), and the consequent reductions in health risks.” (pg.62)

Cleaner Burning Biomass Stoves: In Homes!

https://i.pinimg.com/originals/0c/30/11/0c301121de2b7b0f6c4e07e360228e5e.jpg
The British Petroleum clean burning Oorja FD-TLUD stove from India

If protecting health and climate are important in stove projects, why not monetize the reductions of health/climate pollutants in carbon-offset projects?

Only the reduction in fuel use earns carbon income now!

With equal heat transfer efficiency, dirty burning stoves earn as much as clean burning stoves.

Dirty burning stoves are less expensive. “Market demand” reinforces the use of biomass stoves with low combustion efficiency.

Why not add income from reductions in CO, PM2.5 and Black Carbon, etc. to carbon projects to get cleaner burning stoves into use?

The approved 2017 Gold Standard Methodology already exists to do this! See: www.goldstandard.org/articles/black-carbon-and-other-short-lived-climate-pollutants

African Mud Stoves with Chimneys

Damon Ogle was the Technical Director here at ARC

Damon Ogle and the ARC staff have a long history, starting in Central America and Mexico, listening to folks praising their stoves with chimneys. There are now millions of beautiful Latin American kitchens in which the dangerous smoke is transported out of the house, as it is in the USA/Europe. The Rocket stove can be about 50% more fuel-efficient compared to the open fire, so about half the smoke is made. But that is not good enough to protect health inside a home.

Although health-protecting chimneys are seen in Latin America and India, it’s rare to see chimneys in Africa.  

One simple African stove with chimney is seen above. A sunken pot (or pots) sits down near the fire exposing its bottom and sides to the flame. The pot seals into the hole and the smoke flows up the chimney, not into the lungs of the cook and her children. 

Since 1976, ARC has continued to work with local communities worldwide to try to save fuel and protect health. Trying to protect climate requires very clean combustion and we’re working on that, too.

The Not-Stove Intervention

https://1.bp.blogspot.com/_wRpvlNHoi_g/Rz3W9Y4EZiI/AAAAAAAAAhM/u4D1c3Euy9U/s400/IMG_9649blog.jpg

Cooking outside

When the air exchange rate is doubled, the concentration of smoke is reduced by half. The average house in low middle income countries is estimated to have around 12 air exchanges per hour (ISO 19867-3). When ARC measured the air exchange rate outdoors in a gentle breeze it was found to be about 120 per hour. Exposure to smoke could theoretically be dramatically reduced by moving outside.

Changing stoves costs money and the transition to an improved stove is often a time consuming process. ISO reports that even stoves with chimneys (that often leak) only reduce concentrations of smoke in houses by around 75%. Experimenting with increasing the air exchange rate is probably the most cost-effective intervention to protect health. 

When we went to villages where women cooked outside, Dr. Winiarski would frequently ask the women if digging a well, etc. might be more important than new Rocket stoves. That is one of the things that we loved about Larry!

Learning From The Field, Part 3

Testing the SuperPot on a three-stone fire, Batil Camp, South Sudan

ARC engineers rely on feedback from field testing to improve the real-world function of biomass cooking systems. Sometimes the news is challenging, but in this instance the news was very encouraging!

In 2014 the UNHCR (The UN’s Refugee Agency) conducted pilot testing of the SSM SuperPot in seven refugee camps in four countries in East Africa: Kenya (Kakuma, Dadaab), South Sudan (Yida, Maban), East Sudan (Kilo 26), and Ethiopia (Dollo Ado; Bambasi). 

Kakuma: “Tests conducted in Kakuma overall yielded very positive results. The participants confirmed that cooking time is faster, fuel is saved, and water is conserved even if only by a scant amount. Participants agreed that SuperPot is a much better option than the regular cooking pots not only because of the efficiency but they are apparently also easier to clean, saving more energy and water.”

Dadaab: “Smoke expelled from the sides of the pan and does not enter the pot thus no change in the smell and taste of food. SuperPot cooks food faster and thus less firewood used. Less usage of firewood and faster cooking would mean less protection incidents, more time for infant/child care. With the SuperPot there was less heat loss and firewood consumption by wind as most of the surface was covered with the pan unlike the traditional pot.”

Batil: “Significant differences in cooking time were noted: for CSB++ (corn-soy blend flour) the Stovetec SuperPot cooked 8 minutes faster than the local pot; for cereal, there was a difference of 4 minutes. With pulses, super pot cooked faster by 5 minutes. Overall, Stovetec is time efficient. The fuel savings are particularly impressive.”

Yida: “Together, both tests saved women 20 minutes in overall cooking time. According to the participants, this time saved ‘can be used for other productive household economic activities or be dedicated to childcare which will effectively improve the nutrition and health status of the children and the entire household members.'” 

East Sudan: “Testing was conducted at hospital kitchen inside Kilo 26 hospital complex by four people including two cooks and the HAI nutrition coordinator. 500g of lentils were cooked in 750ml of water in both pots on improved stoves. The super pot cooked the lentils in 27 minutes, as opposed to aluminum pot, which took 34 minutes, for a difference of 7 minutes.”

Assossa: “Results indicate that community perspectives are positive for the StoveTec super pot. The water boiled faster in the super pot by 3 minutes and the lentils were cooked 15 minutes earlier on kerosene stove, while also being 9% more fuel efficient than the regular pot. When testing CSB on kerosene stove, super pot was 4% more fuel efficient and saved 7 minutes of cooking time.”

Hilaweyn: “Tests were ran in Buramino Block 13 and Buramino Block 24 Line A with woman groups. In Block 13, the women tested cooking time for 500g of rice over an improved stove (with windshield). The Stove Tec pot cooked the rice faster by 8 minutes. In Block 24, women cooked 500g of lentils over firewood. Stove Tec pot out performed local pot only by 2 minutes. Neither water used nor fuel consumption were measured.”

Summary:

“Results indicate that the super pot is fuel efficient, effective in saving time, safe and well accepted by the community.”

Recommendation:

In their summary report, the UNHCR Food Security and Nutrition Unit advised “Procurement and distribution of SuperPot in select humanitarian contexts within priority countries according to needs of the most vulnerable households.”

For more SuperPot info:
 https://www.ssmstoves.com/Product/Accessories/49.html

To read the summary report: https://aprovecho.org/publications-3/, scroll down to “Pots” section.

Cooking Outdoors as a Health Intervention

Cooking over an open fire in Ghana. (Photo: Global Alliance for Clean Cookstoves)

The air in a kitchen has to be very clean to protect women and children from multiple diseases. Unfortunately, moderate amounts of smoke seem to damage health almost as much as higher concentrations. 

As exposure rises from zero, the chance that a child will get pneumonia increases sharply and then levels off so that indoor air with 200μg/m3 PM2.5 is almost as dangerous as air at 400μg/m3 (Burnett et al., 2014). The World Health Organization Intermediate Guideline for PM2.5 is 35μg/m3.

In order of effectiveness, when cooking in a kitchen, health interventions seem to be:

  1. Venting smoke up a functional chimney.
  2. Increasing the fresh air entering the kitchen to dilute smoke and gases. (When the outdoor air is clean and the air exchange rate is doubled, the indoor air pollution is reduced by half.)
  3.  Burning up almost all of the smoke in the stove.

 Unvented Rocket stoves, and other ‘moderately clean burning’ stoves (such as a carefully tended open fire with pot skirt), emit much too much smoke and gas to protect health in houses. 

Cooking outside, especially upwind of the fire in a bit of breeze, is highly effective in lowering harmful concentrations of PM2.5.

Cooking outside seems to be a first choice intervention, when applicable. Even ‘moderately clean burning biomass stoves’ can be used when the cook is upwind of the fire in a bit of a breeze, meeting the WHO Intermediate Guideline for PM2.5. 

Of course, cooking with a low emission stove is preferable, when possible!