Man at chalkboard
When analyzing a system, try to improve the least efficient part first. 

There are three types of heat exchangers generally used to capture the heat produced in a combustion chamber.

The hot flue gases can:

  1. Heat mass, like heavy stone or masonry
  2. Heat water which then warms the house or…
  3. The easiest and least expensive route – make the hot stove gases efficiently heat the air inside the room

In modern houses with limited air exchange rates heating the air has become the popular option. High mass heat exchangers were created in the days of drafty houses when heating air was a losing proposition. Old houses had air exchange rates of more than 10 exchanges per hour. All the air in the house was replaced ten times or more every hour! It didn’t make sense to heat air that would quickly be outdoors.

Heat exchangers increase heat transfer to the room by making sure that the hot flue gases leaving through the chimney are as cool as possible. Even a smoldering fire turns about 90% of the wood into heat. But, heat transfer efficiency (heat delivered to the room) can be less than 20% in poorly designed systems. As the cartoon shows, a little improvement in heat transfer equals impressive increases in fuel efficiency.

Retaining Heat is Part of the Equation

We cook beans (and other long simmering foods) at Aprovecho using a “haybox.” The pot of food is boiled for ten minutes on a stove and then placed in a well-insulated, airtight box. The beans inside the pot get soft and palatable because the retained heat is sufficient to finish cooking them. We end up using a great deal less fuel because the haybox has improved the heat transfer into the pot. (It’s also a much easier cooking method!)

How a haybox works
A Haybox cooks beans by keeping the heat in the pot. When cooking on a stove, the heat needs to be constantly replaced, using more fuel.

The reason that beans are usually simmered over a fire for a couple of hours is because the pot constantly loses heat to room air. The reduced flame underneath the pot replaces the lost heat.

In the same way, a furnace or a wood replaces the heat in our houses because the house allows the heat to constantly leak away. The house loses heat and the burning wood replaces it. If the house loses a lot of heat, we use a lot of wood per season. If the house loses less heat, we can save trees and are better stewards of this precious resource. If the house loses very little heat, the stove is frequently not even lit because energy in sunlight and interior sources of heat are now equal to the heating demand.

Integrated stove for heating, cooking, electricity

Watch a video of the downdraft rocket stove that ASAT Inc. will show in Washington D.C. at the Alliance for Green Heat/DOE sponsored Wood Stove Design Challenge from Nov 9 to 13. ASAT gratefully acknowledges support from the US Environmental Protection Agency under EPA SBIR contract number EPD18009.


See an introduction to the Integrated Stove on Youtube: https://youtu.be/LUH3LMTG1OM

Long sticks are placed vertically in the combustion chamber where only the tips burn. A weight pushes the wood down as the ends turn into soft charcoal. Cooling fins on the top half of the feed tube help keep only the tips of the sticks burning. The room air is heated by the tall heat exchanger and cooking is possible on top of the cylinder.

The stove features a thermoelectric generator near the coals to create 18 W of electricity when the stove is running at its 10 kW high power setting. The electricity is distributed to two USB ports for high speed cell phone charging and LED lighting. Aluminum fins protrude into the combustion chamber to bring heat to the hot side of the generator, and a radiator on the bottom of the stove draws the heat away from the cold side and into the room.

It has been quite nice to have a warm lab as the temperature outside drops. You will certainly enjoy it during our post ETHOS TLUD summit.