Manufacturing pot skirts

In 2013, C-Quest Capital (CQC) began distributing and installing the TLC Rocket Stove (TLCRS), a high-efficiency, long-life metal and brick improved cookstove, to the rural poor of Malawi. Early learning has resulting in many upgrades to the stove to improve sustained use and a long life. Over the past two years, CQC has installed the TLCRS in 450,000 Malawian households. Beginning in January 2020, Ener-G-Africa (EGA), a Malawian entity formed by CQC and Malawian entrepreneurs, began manufacturing all the metal stove parts for CQC’s sub-Saharan Africa TLCRS program and has since produced more than 300,000 sets of parts.

Interior view of EGA Stove factory in Lilongwe, Malawi
Stove Kits ready to ship at Ener-G-Africa’s factory in Lilongwe, Malawi

More recently, in February 2021, CQC placed irrevocable orders for the first 10,000 Jet-Flames from Shengzhou Stove Manufacturer in China, marking the first large scale commercial commitment to Jet-Flame distribution in the world. With CQC’s funding, EGA’s factory in Lilongwe is currently building the second solar panel assembly plant in sub-Saharan Africa and will begin manufacturing the solar panels, and eventually the batteries, needed for the Jet-Flame Kit.  CQC is hoping the superior cost and cooking amenity provided by the Jet-Flame will make serious inroads to the charcoal user market.

Through the growing partnership between CQC and EGA, the TLCRS will be installed on a two stove per household basis in three million households across eight sub-Saharan African countries in the next four years. Together, CQC and EGA are setting a new standard for cookstove projects in rural Africa. 

Manufacturing pot skirts
Welded pot supports
Parts ready for packing
Manufacturing area at Ener-G-Africa’s factory in Malawi
CQC stove set up for testing under the LEMS hood

ARC is investigating how to optimize the performance of the SSM Jet-Flame in the CQC earthen brick stove. Forty six thirty-minute ISO 19867 Water Heating Tests were completed under the LEMS hood at seven fan speeds. Two 4 cm x 4 cm douglas fir sticks were burned side by side. Five liters of water in a seven liter pot were heated, and the CQC pot skirt was used in all tests.

Results

Tier 4 ISO Voluntary Performance Targets:

  • Thermal Efficiency           40% to 49%
  • CO                                     <4.4g/MJd
  • PM2.5                               <62mg/MJd

Time to boil: The time to boil decreased with an increase in fan speed.

Thermal efficiency: The thermal efficiency stayed close to 35% in most cases and was higher at 3 and 8 volts (around 40%).

Firepower: The firepower rose to 6.8kW at 8 volts, starting at 2.6 kW at 2 volts.

Emissions of Carbon monoxide: Generally emissions decreased with increasing fan speed.

Emissions of PM2.5: 7 and 8 volts scored the best, at half of the result of 5 volts.

Combustion chamber temperatures: The mid combustion chamber temperatures rose with increases in fan speed from 382C to 730C.

Excess air:  Lambda fell as voltage increased from 4.1 to 1.9.

We recommend that the project do enough field testing to determine what settings are preferable to local cooks, remembering that higher voltages consume more power. In this way, the Jet-Flame/CQC stove can be tailored to regional cooking, keeping in mind the power output and use patterns of the CQC photovoltaic solar system.

Here’s what the flame looks like when varying the voltage:

Kabanyana Murabukirwa Domina and Jean Marie Vianney Kayonga in Rwanda
Kabanyana Murabukirwa Domina and Jean Marie Vianney Kayonga in Rwanda
Kabanyana Murabukirwa Domina and Jean Marie Vianney Kayonga in Rwanda

One of the roles of the ARC engineer is to give accurate technical information to the in-field decision makers who are directing the stove project. The folks on the ground have to make sure that cooks really like the stove, that the price is market based, that manufacturing is arranged for, etc. ARC engineers and the field team work closely together as the project evolves.

A New Project in Rwanda

In Rwanda, Kabanyana and Jean-Marie and their NGO, ENEDOM, are working with C-Quest Capital and ARC on a carbon credit supported Jet-Flame project. We met Jean-Marie through the internet and realized that he is well known in the sector. In fact, he knows many of our friends in Africa. Dr. Dan Lieberman at Global Health Labs sent Jean-Marie twenty Jet-Flames, and he showed them around to many of organizations, like the World Bank, that have large projects in the country.

Real World Use Guides Product Improvement

Moving the Jet-Flame to the side of the CQC stove
Moving the Jet-Flame to the side of the CQC stove

When we envisioned the Jet-Flame we imagined that it would be inserted into the fuel door of a Rocket stove. Mr. Shen at SSM directed the effort to manufacture the Jet-Flame and it includes a beautiful stainless steel stick support that also protects the fan. However, it only took several weeks of trails for ENEDOM to make a strong recommendation to move the Jet-Flame to the side of the CQC stove. Cooks in their homes were accidentally burning up the cord!

We gratefully thank ENEDOM for helping us make fewer mistakes. It’s another great example of trying to make sure that reality is in the product.

Home made CQC rocket stove (L) is easily improved with the addition of a Jet-Flame (L).

ASAT, the for-profit arm of Aprovecho, has been awarded a prestigious Tibbetts Award by the US Small Business Administration. The Tibbets Award is given for demonstrating significant economic and social impact from the R&D funding provided by SBIR (Small Business Innovation Research) grants. ASAT received EPA SBIR grants that enabled the research and development of:

  • The Jet-Flame that increases combustion efficiency (costs around $11). See: www.Jet-Flame.com
  • An air cooled thermoelectric generator (water cooling is hard to install).
  • A low cost, easily cleaned electrostatic precipitator (90% reduction of soot).
  • The Integrated Stove. See: www.ssmstoves.com/project/m55/

We partnered with the Gates funded Global Health Lab to develop the Jet-Flame. They have recently supported sending Jet-Flame samples worldwide. C-Quest Capital (CQC) has completed several pilots and has plans to do projects in Africa, Asia, and India. A factory in Malawi is gearing up to build Jet-Flames and solar systems with carbon credits from CQC. 

Home made CQC rocket stove (L) is easily improved with the addition of a Jet-Flame (L).
The CQC home made brick Rocket stove is updated with the Jet-Flame in Malawi

“C-Quest Capital is committed to the Jet-Flame as a truly breakthrough technology. Our stoves in Malawi now use less wood, women save time cooking, and breathe a lot less smoke.”

Ken Newcombe, CEO, C-Quest Capital

The clean combustion of biomass adds homegrown power to the energy mix here in the USA and in other countries. Without the EPA SBIR this would not have happened! To learn more about the Tibbets Award, visit tibbetsawards.com.

sticks and charcoal start to combust in a rocket stove

The Jet-Flame was developed from combustion concepts used in fluidized beds and TLUDs.

Fluidized Bed

fluidized bed combustion diagrams

“In its most basic form, fuel particles are suspended in a hot, bubbling fluidity bed of ash and other particulate materials (sand, limestone etc.) through which (under air) jets of air are blown to provide the oxygen required for combustion or gasification. The resultant fast and intimate mixing of gas and solids promotes rapid heat transfer and chemical reactions within the bed.”   https://en.wikipedia.org/wiki/Fluidized_bed_combustion

Top Lit Up Draft

diagram explaining how a top loaded up draft stove works

The TLUD uses under air flowing up through the fuel to transport wood gas into the hot layer of charcoal and flame above the fuel assisting more complete combustion efficiency.

Cleanly Starting the Jet-Flame

High velocity under air jets blow up into the lit charcoal placed on top of small sticks of wood. When the charcoal and wood are on fire, long pieces of wood are pushed into the made charcoal to start a Rocket Jet-Flame without making visible smoke. The sticks of wood are burned at the same rate as the continual production of charcoal creating a cleaner combustion process related to a fluidized bed and the TLUD.

sticks and charcoal start to combust in a rocket stove

Charcoal over wood is lit.

bed of charcoal in rocket stove

The charcoal becomes superheated with jets blowing up into the pile.

sticks burning in rocket stove

After 30 seconds, long sticks of wood are pushed against the burning charcoal creating flame.