pdf available at: deohs.washington.edu/sites/default/files/AirFilterInfographic_FINAL.pdf

I hope that you are living in a smoke free environment! There’s a forest fire about 40 miles east of the lab that floods our valley with smoke when the wind slows down. I just looked up and noticed that it was getting hard to see Blue Mountain, a sure sign that the northwesterly wind wasn’t pushing hard enough to clear the skies. It reminded me of living on the Coromandel Coast in India where a blue sky was unlikely even at the beach.

Burning up smoke is not all that difficult to do: just thoroughly mix the smoke into the flame. But that doesn’t happen in a forest fire (or in a three stone fire). The smoke and flame go in different directions. The industrial reduction of PM2.5 often depends on both improved combustion efficiency and the post-combustion filtration/scrubbing of emissions. When I can’t see Blue Mountain anymore, I switch on a box fan that has a 20” by 20” by 1” furnace filter taped onto the inlet side of the fan. The fan pulls the dirty air in my office through the filter and the PM2.5 is removed from the air that I’m breathing.

Simple cooking enclosure

We wrote a paper describing how the same fan and filter reduced PM2.5 when installed in a hood over the stove. We used a washable filter and hoped that the combination of a clean burning stove with post combustion filtration of smoke might help to protect inside and outside air quality. Check out the paper: Still, D. K., Bentson, S., Murray, N., Andres, J., Yue, Z., & MacCarty, N. A. (2018). Laboratory experiments regarding the use of filtration and retained heat to reduce particulate matter emissions from biomass cooking. Energy for Sustainable Development, 42, 129–135. https://doi.org/10.1016/j.esd.2017.09.011

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *