Posts

Computer screen shows emissions rates as lines on a graph

David Evitt, ASAT COO, and Sam Bentson, ARC GM, have been adding capacity to the Laboratory Emissions Monitoring System (LEMS). So far, four oxygen sensors, temperature probes in the fire and under the pot, and a velocity sensor give us a clearer picture of what’s going on in a stove. Knowing PM2.5, CO, CO2, and firepower at the same time, combined with the improved testing protocols in ISO 19867, is making us more confident that iterative improvement can be accomplished relatively quickly.

During a test, the LEMS screen shows real time emission rates of CO2 (blue line), CO (red line), and PM2.5 (black line).

Starting in early December, Dean Still and a research assistant will be doing 20 tests per week to create an optimized forced draft insert that cleans up the combustion of found biomass fuels and improves thermal efficiency in open fires, high mass, and Rocket stoves. A screen in the hood showing real-time data helps reduce the needed repetitions to achieve statistical confidence.  The 90% confidence interval has to be less than 1/3 of the range of the Tier that contains the conservative bound of the confidence interval. When Tier Confidence Interval Range is equal to or less than 0.33, the number of tests is deemed sufficient to meet the Aprovecho data repeatability quality standard (seven to nine tests each for high, medium, and low power are usually sufficient).

David is in grad school with Dr. Nordica MacCarty at Oregon State University and the ARC lab is supplying them with information. We’ll keep you in the loop as we make discoveries. Part of the goal is to keep the optimized insert as close to a $10 wholesale price as possible.

Here we go! Eco-Science marching forward!

Ornate chimneys at Hampton Court Palace, London
Ornate chimneys at Hampton Court Palace, London
Multiple ornate chimneys grace Hampton Court Palace.

An Important Health Intervention

When cooking stoves are tested in the field the emissions of PM2.5 and CO are often higher than lab results (Roden et al., 2009). The wood can be wetter, the fire is made with less attention, and many real life variables create higher levels of pollution. It’s hard to imagine that unvented cookstoves for indoor use can be invented that will protect health when too much wet fuel is pushed quickly into the combustion chamber. Even modern cars make a lot of smoke when trying to combust bad quality gasoline.

Clean burning stoves require clean fuel just like automobiles. The sticks of wood need to be relatively dry and the metering of the sticks into the combustion chamber cannot happen too quickly. Perhaps batch fed pellet stoves will have more similar lab and field results if the pellets are well made, dry, and clean?

It’s illegal to install most types of unvented combustion devices in the United States and Europe. Even natural gas room heaters and gas cooking stoves are vented. For realistic protection of health, ARC consultants try to attach chimneys to biomass cookstoves whenever possible. When the stove smokes at least the pollution goes outside above the roof line where it becomes diluted.

Health Supportive Alternatives

Adding a chimney is not always a possibility. In these cases, it is helpful to move cooking out of the closed kitchen, for example under a veranda in the open air. Increasing air exchange rates by cooking under a veranda has been shown to dramatically lower concentrations of harmful PM and CO. Even opening the door and window in a test kitchen lowered the particulate matter 1-hour concentrations between 93% to 98% compared to the closed kitchen, and the CO 1-hour concentrations were 83% to 95% lower (Grabow et al., 2013).

Hundreds of years ago in Europe chimneys were developed as a first step to take smoke and gases outside of the kitchen. In the United States millions of wood burning heating stoves are used indoors every winter. Chimneys transport the pollution outdoors where it is mixed with the outside air.

References

Roden, C. A., Bond, T. C., Conway, S., Osorto Pinel, A. B., MacCarty, N., & Still, D. (2009). Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmospheric Environment, 43(6), 1170–1181. https://doi.org/10.1016/j.atmosenv.2008.05.041

Grabow, K., Still, D., & Bentson, S. (2013). Test Kitchen studies of indoor air pollution from biomass cookstoves. Energy for Sustainable Development, 17(5), 458–462. https://doi.org/10.1016/j.esd.2013.05.003