Aprovecho Announced as a Winner of the Wood Heater Design Challenge

The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO), in collaboration with Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and the Alliance for Green Heat, today announced the winning teams for the Wood Heater Design Challenge (WHDC). 

Aprovecho Research Center, from Cottage Grove, Oregon, came in second place and won $25,000 with a novel burn pot, airflow configuration, and sensor package for pellet heaters. Davidon Industries from Warwick, Rhode Island was awarded first place for their mechanically automated, combustion-air control technology for cordwood heaters. Kleiss Engineering from Cloverdale, Indiana, won the third-place prize with a smart wood stove heater.

“Embracing innovation allows us to challenge existing norms, push boundaries, and discover new solutions that can reshape the entire industry,” said Dr. Valerie Sarisky-Reed, Director of BETO. “Wood stove research is part of DOE’s overall strategy to develop affordable bioenergy technologies and convert our nation’s renewable resources into fuels, power, products and in this case, more efficient wood stoves for homeowners.”

Aprovecho, Davidon, and Kleiss were selected from nine teams competing at the Wood Heater Technology Slam in September 2022. Teams pitched new wood stove ideas to retailers, the public, and experts, who assessed which stoves were the most innovative, efficient, and offered the greatest market potential. The three finalist teams moved forward to the testing phase of the competition, which was held this past spring at BNL in Upton, New York.

Read the full press release on the DOE Website. Learn more about the BETO-funded Wood Heater Design Challenge.

Sam Bentson trains Bernard Kabera and colleagues to use the new stove lab equipment

Setting Up a New Lab in Rwanda

Aprovecho’s General Manager Sam Benston recently returned from a trip to Rwanda, where he helped to set up a new ISO compliant cookstove lab. Here are some photos and information from Sam about his work there:

I was installing the LEMS (Laboratory Emissions Monitoring System) and PEMS (Portable Emissions Monitoring System) and the rest of the new ISO 19867 cookstove laboratory at the Rwanda Standards Board in Kigali. The lab started as an empty room full of equipment in boxes. I trained the laboratory staff on the set-up and use of the equipment for cookstove evaluations according to ISO 19867. Shortly after I left there was a Grand Opening to celebrate on the ISO’s World Standards Day. Here is a twitter link with photos:  https://twitter.com/REMA_Rwanda/.  Our new PEMS with the battery powered gravimetric system is visible.

The PEMS is visible here at the launch of the Cook Stove testing lab in Kigali
The PEMS is visible here at the launch of the Cook Stove testing lab in Kigali.
Photo via @REMA_Rwanda

Aprovecho provides a turnkey cookstove testing laboratory which is useful for cookstove performance certification, design, and basic research. The lab is centered around the ARC manufactured LEMS. It consists of a gas and particle analyzer with a pump and filter PM2.5 sampler, an emissions collection hood, and a dilution tunnel. The LEMS is the result of 20 years of development that started due to the lack of affordable and easy to use equipment suitable for cookstove emissions monitoring.

Testing a stove under the new LEMS hood.
Testing a stove under the newly installed LEMS hood.

Aprovecho develops its equipment as the need arises during research and development activities that occur in its laboratory. Aprovecho’s ability to commission the other instruments that makeup a cookstove testing laboratory is the result of a similar depth of experience.

Bernard Kibera and colleagues training to use the new stove lab equipment
Mr. Bernard Kabera and colleagues training to use the new stove lab equipment.
Sam Bentson trains Bernard Kibera and colleagues to use the new stove lab equipment
Sam Bentson trains Mr. Bernard Kabera and colleagues to use the new stove lab equipment.

It was remarkable to observe how the Rwandan people have protected themselves against COVID. It was a great honor to be part of their community at this time.

–Sam Bentson

Sam Bentson and David Evitt with the new Jet-Flame

A Tier 5 Rocket Stove

Sam Bentson and David Evitt with the new Jet-Flame
Sam Bentson, ARC Lab Manager, and David Evitt, ASAT COO, developed the Jet-Flame with Shengzhou Stove Manufacturer and Dr. Dan Lieberman and Dr. Mike Barbour at the Gates funded Global Health Labs

The cast iron Jet-Flame sends 30 jets of pre-heated air up into the burning charcoal and wood in an open fire, sand/clay stove, or in a Rocket stove. It is patterned after industrial burners that position jets of primary air underneath the fuel bed to clean up combustion. Both Underfeed Stokers and Fluidized Bed Boilers use primary air that enters the fuel bed from underneath the fire.

In 2013, with DOE funding, ARC built a bottom-air-only prototype stove and has been experimenting with improving the technique, resulting in the Jet-Flame combustion chamber accessory manufactured by SSM in China. There are several advantages in a bottom-air-only approach. The jets of air flow into the fuel bed from holes in the floor of the combustion chamber. Since the pre-heated air flows vertically, back-drafting out of the fuel door in a Rocket type stove is easier to overcome. The jets of air super-heat the charcoal layer underneath the sticks of wood. The hot jets of air emerge from the charcoal and pierce the laminar flames emitted by the wood creating turbulent eddies that stir up the flames to enhance the speed of mixing and combustion. The turbulent combustion zone creates short, intense flames that burn the fuel more completely before they cool off too much to sustain combustion. The increased velocity of the higher temperature flue gases also improves heat transfer efficiency.

Winiarski sunken pot Rocket stove with chimney
Winiarski sunken pot Rocket stove

When the Winiarski sunken pot Rocket stove with chimney is combined with the Jet-Flame the increase in combustion efficiency results in a truly improved stove with the ability to protect health. Since the stove and chimney do not leak in lab tests the stove does not emit fugitive emissions into the kitchen. The stove achieves all ISO 19867 Tier 5 ratings for both thermal efficiency and emissions of CO and PM2.5.

In 2004, ARC was hired by the Shell Foundation to bring the Rocket stove to India. Protecting health was a component of the project. Unfortunately, the natural draft Rocket stove was not clean enough burning to accomplish the task. Higher temperatures and a lot more mixing were needed. We wish that, when asked for a health protecting stove, we had been this far along. It has taken a while to make some progress. 

Test results of the Jet-Flame with a vented Rocket stove.
Test Results of the vented (with chimney) sunken pot Rocket with Jet-Flame