https://tse4.mm.bing.net/th?id=OIP.tR-juYhOLOvthnEU_gOqKgAAAA&pid=Api&P=0
Dr. Mouhsine Serrar and the Rocket institutional stove designed by Dr. Larry Winiarski

There are at least three ways to make institutional stoves with chimneys, all of which work well and save fuel and decrease emissions. Here they are:

  1. Shell Foundation supported the making of an eight-part video, a step by step guide to making a 50 to 100 liter institutional Rocket stove, with a heat resistant metal Rocket combustion chamber. It is a great stove with lots of successful field testing but it costs the most to construct because heat resistant metals like 410 stainless or FeCrAl are increasingly expensive. The super insulated combustion chamber requires these types of metal. 304 stainless will not last. https://youtu.be/VdhLWMW7IXA
  2. Cooking With Less Fuel: Breathing Less Smoke shows how to make the same institutional stove using bricks for the Rocket combustion chamber. Construction details can be found at aprovecho.org in the publications section. The book was written with the World Food Program in Rome. This is a less expensive stove that is slightly less fuel efficient at cold start but lasts longer and is easier to make in places where 410 stainless and FeCrAl are not available.
  3. Making a VITA style institutional stove without a Rocket combustion chamber is the least expensive way to create an institutional stove. The open fire under the pot is supported on a grate and the hot gases flow up the inside of the skirt, down the outside of the skirt and exit out the chimney placed below the bottom of the pot as in the Rocket stoves shown above. You can find a video we made about constructing the VITA stove at: http://aprovecho.org/video-gallery/

Lots of manufacturers do not use the chimney but we think that protecting health is very important. We try to follow Don O’Neals advice (HELPS International) to always include chimneys whenever possible, imagining our mothers cooking and getting ill from exposure to the harmful emissions without the protection of the chimney.

The Jet-Flame in a home made CQC Rocket Stove
The high mass CQC stove with Jet-Flame inserted from the side.
The SSM Jet-Flame in the C Quest Capital 15 brick stove

The Journal “Energy for Sustainable Development” has just published Aprovecho’s most recent research paper, “Retrofitting stoves with forced jets of primary air improves speed, emissions, and efficiency: Evidence from six types of biomass cook stoves.” It was authored by Samuel Bentson, David Evitt, Dean Still, Dr. Daniel Lieberman and Dr. Nordica MacCarty (Energy for Sustainable Development 71 (2022) 104–117)

Read the full research paper at https://doi.org/10.1016/j.esd.2022.09.013, available to all as an open access document thanks to Dr. Dan Lieberman of GH Labs.

Quoting from the Abstract:

Incorporating jets of forced air into biomass cook stove combustion has been shown to potentially decrease harmful emissions, leading to a variety of designs in recent years. However, forced draft stoves have shown mixed success in terms of real world performance, usability, and durability. The Shengzhou Stove Manufacturer Jet-Flame forced draft retrofit accessory was developed by the Gates funded Global Health Labs and ARC, to implement forced jets of primary air at a low cost into a wide range of types of cook stoves using a small 1.5-W fan housed in a low-cost cast iron body to be inserted beneath the fuel bed of a biomass cooking fire.

This research sought to quantify the potential efficiency and emissions performance impacts of the Jet-Flame when installed in six different types of biomass cook stoves (three open or shielded fires and three rocket stoves) versus the natural draft performance of each. The effect of the operating fan voltage was also measured. A series of tests following a modified ISO 19867-1:2018 protocol were performed in the laboratory using the Aprovecho Laboratory Emissions Measurement System (LEMS) equipped with additional oxygen and temperature sensors. 

Results for each stove, carefully tended with a single layer of sticks, showed that the global average PM2.5 reduction with the Jet-Flame was 89% relative to the natural draft cases, with larger relative improvements seen in the most rudimentary stoves. CO was reduced by a global average of 74%, reaching Tier 4 or 5 for all stoves. Thermal efficiency was also improved by 34% when calculated without taking into account the energy content of the remaining char (or 21% with char), illustrating the value of burning char to provide cooking energy rather than leaving it unburned in the combustion chamber as is common in many natural draft stoves. Time to boil was also reduced by 8%.

In addition, adjusting the voltage of the jet-flame assisted in modulating firepower, possibly improving the usability of the stove.

For more about the Jet-Flame, see www.jet-flame.com

Smokestacks belch out smoke, spelling out CO2 in a blue sky. A Euro symbol floats to the right.
Smokestacks belch out smoke, spelling out CO2 in a blue sky. A Euro symbol floats to the right.
Image by Petra Wessman via Flickr

How can smoke, extremely dangerous for health and climate change, be ignored in carbon credit equations? Carbon dioxide and methane are counted but not smoke. Carbon dioxide is reduced when heat transfer is improved resulting in less wood being burned. Wood doesn’t make appreciable amounts of methane. 

Because smoke is not counted to earn carbon credits, smoky stoves with good heat transfer efficiency make as much money as clean burning stoves even though the Black Carbon in smoke is something like 680 times worse than CO2 by weight for warming. Because smoke is not included in climate credit math, adding clean burning to biomass cook stoves usually has to be as inexpensive as possible.

We know that adding high pressure mixing to Rocket stoves dramatically reduces smoke. As of 2022, forced draft is required to achieve adequate amounts of mixing. Mixing requires high pressures that (so far) cannot be made with natural draft. We know how to improve the Rocket but are in the process of completing the transformation to clean burning.

Nice to know the solution!

In 2021, ASAT (the for profit arm of ARC) won the Small Business Administration’s Tibbetts Award for work funded by their Small Business Innovation Research (SBIR) program, awarded through the U.S. Environmental Protection Agency (EPA). ASAT Inc. staff pose with their Tibbetts Award: Sam Bentson, David Evitt, Jill Allen, Dean Still, Kim Still, and Dr. Nordica MacCarty.

The investigation of how to reduce emissions and fuel use in biomass stoves continued with support from an EPA SBIR award. Two products were manufactured by our Chinese partner SSM, a heating/cooking stove and the Jet-Flame, a $12 insert that has made stoves 67% cleaner burning in field tests. https://www.jet-flame.com/

The Gates funded Global Health Labs (Dr. Daniel Lieberman) also worked with ARC/ASAT and BURN (Peter Scott) to improve the Rocket stove. BURN and ARC/ASAT added fan driven mixing to the Rocket stove.

Learning how to optimize the use of high pressure jets of air at high, medium, and low power required hundreds of experiments. Different pressures are needed as firepower is adjusted. The size of the fuel also affects emission rates. Experiments under the LEMS hood determine the location of jets, pressure, and volume of air for varying applications.

Dr. Samuel Baldwin

In 2011, Dr. Samuel Baldwin at the Department of Energy (who wrote the Bible on cook stoves in 1987) organized a two-day 100 person conference to identify how cook stoves could be improved and manufactured. Key recommendations were:

  •  At least 90% emissions reduction and 50% fuel savings are appropriate initial targets for biomass cook stoves. 
  • Multiple stove designs will be needed to accommodate a variety of cooking practices, fuels, and levels of affordability.
  • Technical R&D should guide and be guided by field research, health, social science, and implementation programs. At every stage, laboratory and fieldwork should be integrated into an iterative cycle of feedback and improvement.
  •  The cost and performance tradeoffs associated with the use of processed versus unprocessed fuels should be explored. While processed fuels can improve stove emissions and efficiency, the processing adds additional costs and these fuels may require a fuel distribution system.

From 2013-2015, ARC received a grant from DOE and spent three years establishing a baseline of stoves in use and then improved five types of stove prototypes with the iterative development process using the LEMS emission hood. The lab testing showed how combustion and heat transfer could be improved in those five types of stoves with the hope that field testing would evolve useful products that use less fuel and make less smoke. A book was written: Clean Burning Biomass Cookstoves, (2015) available on the publications page. The book was updated in 2021.

In 2009, The New Yorker published an article about the Rocket stove entitled Hearth Surgery: The quest for a stove that can save the world. One year later, USAID funded field tests in Africa showed that the insulated Rocket stove was not cleaner burning than the open fire. The Rocket with skirt saved 40% of the fuel to cook and emissions were only reduced by that amount.

Not a Planet Saver, yet!

The insulated Rocket combustion chamber raised temperatures but as Dr. Winiarski realized at the time, flame, air, and gases were not adequately mixed to achieve sufficient combustion efficiency. Larry knew that the Rocket was smoky but it was simple to make and with a pot skirt saved fuel. He wanted to provide folks with a stove that was helpful and he realized that it wasn’t perfect.

Larry’s idea went viral worldwide and continues to be a favorite on the internet and in many low- and middle-income countries. Millions of Rocket stoves are manufactured and sold yearly by factories large and small.

Going viral is great but can have a downside especially when the initial products are not technically mature. It’s normal for first generation products to be improved as time goes by. The process of development continues in 2022.

The Field Informs the Lab

In Part 1, we gave examples of how field studies can provide unpleasantly surprising results. Rocket stoves were designed to make a little less smoke and use substantially less fuel. So when the rocket stove was field tested by USAID the inventor, Dr. Larry Winiarski, was not surprised that the stove still made smoke. But the ARC team was surprised that it was not a real improvement over the open fire.

In 2011 the goals for cookstoves published by the Department of Energy asked that a stove use 50% less fuel and make 90% less PM2.5 to protect health when used indoors. Now in 2022 stoves are also supposed to address climate change, which means emitting less PM2.5 and hopefully making less than 8% black carbon. Field tests show that we need to make more improvements to meet these specific goals.

How are these reductions achieved in the lab?

  1. Use a chimney to reduce in-home concentrations of CO and PM2.5.
  2. In lab tests, approximately 850°C gases need to flow in tight channel gaps around the pot(s) to reduce the fuel used to cook by about 50%.
  3. Molecular mixing at 850°C (0.2 second residence time) can achieve something like a 90% reduction of PM2.5 (requires forced draft in a Rocket stove).
  4. This mixing reduces greenhouse gas emissions by about the same amount.

Natural-draft and forced-draft TLUD stoves burning pellets and forced draft Jet-Flame stoves burning dry sticks without bark get close to these reductions in the lab. Unfortunately, they frequently do not yet meet these goals in the field.

The lab has to move into the field to learn if current technology can accomplish modern goals. Let’s go!

Next week in Part 3: sometimes field tests show success.

What happens if a bunch of sticks are bundled together, lit at the tips, and inserted into a well-insulated horizontal enclosure that enters a Rocket stove providing draft?

Well, it’s hard to get everything to work well. As Dr. Winiarsky pointed out “Gasifiers are finicky.”

But, when all of the tips of the bundle of sticks are lit at the same time, and there is the right amount of primary and secondary air, then the fire moves horizontally in the well insulated enclosure away from the Rocket stove and emissions can be decreased.

Working with the Gates funded Global Health Labs in 2017, ARC experimented with various horizontal gasifier prototypes and sometimes the results (Tier 4 for PM2.5) were encouraging.

ARC decided to explore the development of primary air jets up into the fire as a more promising technique and left the horizontal gasifiers on the shelf. But who knows, someone may find the concept interesting and continue the investigation of the horizontal gasifier and make it less finicky?

Last week we wrote about using the LEMS to tune up a stove, so it makes sense to share the actual results of a recent test series with you this week.

When ARC makes an Open Fire, we often use three bricks on end to hold up the pot. The bricks are 16cm high. It has been fascinating to experiment with the SSM Jet-Flame in the open fire to try and determine how fuel-efficient and clean burning the combination can be. Last month, we spent a couple of weeks changing one thing at a time and then completed nine 30-minute ISO high power tests on the close-to-optimized design.

Here are the test results:

test results chart

Description of the changes

  • We kept the pot height at 16cm above the top of the Jet-Flame.
  • Three rebar supports held up the pot replacing the heavier and bulkier bricks.
  • A short 6cm high by 18cm long FeCrAl fence kept the sticks on top of the combustion zone in the Jet-Flame.
  • A lightweight Winiarski 304 stainless steel “0.7 constant cross sectional area” stovetop increased the heat transfer efficiency from the hot flue gases into the pot.
  • Thermal efficiency was also improved with an 11cm high pot skirt creating a 6mm channel gap on the sides of the 26cm in diameter pot.
  • We learned that the sides of the open fire should be partially enclosed for best performance. A 5cm high opening at the lower portion of the sides of the open fire allowed fresh air to enter the combustion zone. 11cm of the upper portion of the sides of the Open Fire were enclosed with aluminum foil.
  • To make sure that there was no backdraft, a 7cm tall, 14cm wide and 7cm deep metal fuel tunnel was added on the outside of the sides of the partially enclosed Open Fire.

Photo of the experiment

Conclusion

It looks like a Rocket combustion chamber may not be needed to achieve Tier 4/5 results from an “Open Fire” when tested in a lab. A short fence that holds a single layer of sticks on top of the primary air jets seems to be as good.

Kuniokoa Stove, original top replaced with cast iron top.

It is more likely that close to 50% thermal efficiency will be achieved with a biomass burning stove when:

  • Small sticks are burned that produce tall, hot flames while using the least amount of wood.
  • A 30cm in diameter aluminum pot is used with a 14cm high pot skirt that creates a 6mm channel gap.
  • The stove top (with 6mm pot supports) weighs as little as possible. The narrow channel gaps in the stove top effectively deliver wasted heat from the hot gases into the stove top while increasing beneficial convective heat transfer into the pot, so less mass to hold the heat is better.
  • A grate helps the sticks to make tall, hot flames and reduces the made charcoal.

Starting with all of the above, we tested various Rocket stove combinations to try to determine the effect of mass in the combustion chamber. The Kuniokoa Rocket stove is the lightest Rocket stove in our museum – it is made from sheet metal without insulation. (A refractory metal combustion chamber lasts longer when uninsulated.) When tested at high power (4,645 watts) the thermal efficiency was 51.7%, PM2.5 was Tier 2, and CO was Tier 3. Thermal efficiency dropped to 46.1% when we exchanged the Kuniokoa sheet metal stove top (0.31 kilo) with a cast iron version (2.36 kilo).

A similar Shengzhou Stove Manufacturer (SSM) Rocket stove was tested with a refractory cement combustion chamber (2.7 kilo) surrounded with rock wool insulation. The stove top was made from lightweight 304 stainless steel. When tested at high power (4,816 watts) the thermal efficiency was 48.6%, PM2.5 was Tier 2, and CO was Tier 3. The refractory cement combustion chamber is heavier but it can be insulated because the material has a working temperature of 1,100°C.

When a SSM lighter refractory ceramic combustion chamber (1.2 kilo) was exchanged into the SSM Rocket stove with rock wool insulation and a lightweight 304 stainless steel stove top, the thermal efficiency (at 4,709 watts) rose to 51.4%, with Tier 2 for PM2.5 and Tier 3 for CO.

  • It may be that insulating a one kilo combustion chamber in a Rocket stove offsets the disadvantage of the higher mass when compared to uninsulated sheet metal.
  • In these tests, adding another kilo to the insulated combustion chamber in the SSM Rocket stove lowered thermal efficiency from 51% to 46%.
  • When the mass of the stove top was increased from 0.3 to 2.3 kilos, thermal efficiency dropped by about 5%.