sticks burning in rocket stove

Sometimes it’s good to step back and review the very basis of stove work – fire. Samuel Baldwin gives a good description of how wood burns in his book “Biomass Stoves: Engineering Design, Development, and Dissemination” (1987).

“The combustion of wood and other raw biomass is very complicated but can be broken down crudely into the following steps:”

“The solid is heated to about 100ºC and the absorbed water is boiled out of the wood or migrates along the wood grain to cooler areas and re-condenses. At slightly higher temperatures, water that is weakly bound to molecular groups is also given off.  Heat transfer through the wood is primarily by convection.”

“As the temperature increases to about 200ºC, hemicellulose begins to decompose followed by cellulose. Decomposition becomes extensive at temperatures around 300ºC. Typically only 15% of cellulose and hemicellulose remain as fixed carbon and the remainder is released as volatiles gases. Roughly 50% of the lignin remains behind as fixed carbon”

“The volatiles produced by this decomposition may escape as smoke or may re-condense inside the wood away from the heated zone. This can often be seen as pitch oozing out of the non-burning end of the wood. Heat transfer into the wood is still primarily by conduction, but the volatiles flowing out of the heated zone carry some heat away by convection.”

“As the volatiles escape the wood, they mix with oxygen and, at about 550ºC, ignite producing a yellow flame above the wood. Although radiant heat from the flame itself (not counting radiant emission from the charcoal) accounts for less than 14% of the total energy of combustion, it is crucial in maintaining combustion. Some of the radiant heat from this flame strikes the wood, heating it and causing further decomposition. The wood then releases more volatiles, which burn, closing the cycle. The rate of combustion is then controlled by the rate at which these volatiles are released. For very small pieces of wood, there is a large surface area to absorb radiant heat compared to a little distance for the heat to penetrate or for the volatiles to escape. Thus, fires with small pieces of wood tend to burn quickly. This is also why it is easier to start a small piece of wood burning than a large thick one. A thick piece of wood has less area to absorb the radiant heat from the flame compared to the greater distances through which the heat and volatiles must pass within the wood and the larger mass that must be heated.”

Years of experimenting with stoves at ARC taught us that a high mass combustion chamber absorbs a lot of heat that could be going into the cooking pot. That led us to presume that efficient combustion chambers had to be lightweight, which are harder to make. Once we started experimenting with forced draft, we were surprised to learn that adding forced draft (FD) to a TLUD or a Rocket stove increases the temperature of the gases and largely overcomes the negative effect of a high mass combustion chamber.

The Oorja FD-TLUD and the FD-CQC mud brick stoves generate temperatures of around 1,000°C in the combustion chamber. The option to use a high mass combustion chamber lowers cost and dramatically increases durability when designing forced draft, health protecting, affordable, clean burning, carbon neutral stoves.

The combustion chamber in the pellet burning FD-Oorja that we have in the lab is made from castable refractory ceramic and is over 20 years old. The retail price of the 400,000 British Petroleum Oorja stoves sold in India was around $18. The CQC Rocket combustion chamber is less expensive and is manufactured from sand, clay, and cement. With the addition of forced draft via a Jet-Flame, it reaches Tier 4 for  thermal efficiency and PM 2.5.

To replace health protecting stoves that use natural gas (a fossil fuel) it seems likely that FD-TLUDs and FD-Rockets can be built with lower cost and 10 year durability combustion chambers. The renewably-harvested-biomass fueled stoves need to be manufactured and field tested, and there is a lot of ground to be covered (an understatement), but it’s great that harder-to-make low mass combustion chambers may not be necessary.

Dr. Tom Reed frequently talked about selling a billion clean burning woodgas stoves. Now that the Biden administration is pointing out that natural gas (and electricity made from fossil fuels) are things of the past, it can be imagined that using woodgas to cook may become a larger part of a post-fossil-fuel future.

“On January 27th, the President announced a series of climate actions that may well mark the beginning of the end of the fossil-fuel era…There’s a shock-and-awe feel to the barrage of actions, and that is the point: taken together, they send a decisive signal about the end of one epoch and the beginning of another. And that signal, most of all, is aimed at investors: fossil fuel, Biden is making clear, is not a safe bet, or even a good bet, for making real money. Coal, oil, and gas are the past, not the future.”

-Bill McKibben, The New Yorker, January 28, 2021

Unfortunately, using biomass for cooking is a difficult replacement because:

  • Smoke from cooking with wood is very dirty, damaging human health. 
  • Smoke is something like 680 times worse for climate change compared to CO2 by weight. (Roden, Bond, et al, 2008)
  • The wood fuel needs to be renewably harvested.
  • Although how to manufacture clean burning, carbon neutral biomass stoves is better understood, stoves need to be affordable to capture substantial market shares.
  • In the Millennium Villages, a retail price of something like $10 has been recommended to sell stoves directly into the market. (Adkins, Tyler, al, 2010)

Can affordable, clean burning, carbon neutral stoves be manufactured and sold?

In 2021, there seem to be at least two popular design options. Both rely on inexpensive, long lasting, refractory ceramic combustion chambers and prepared fuels: 

  • Natural draft or forced draft TLUDS, burning pellets
  • Forced draft Rockets, burning dry sticks of wood

Next week, we’ll explore these options.

Dr. Larry Winiarski
Dr. Larry Winiarski
Dr. Larry Winiarski, 1940-2021

Dr. Larry Winiarski, the Technical Director of Aprovecho Research Center (ARC), died this past week at the age of 81. In the 1980’s and 90’s, Dr. Sam Baldwin defined how to improve heat transfer efficiency in biomass cook stoves (pot skirts, etc.), Dr. Tom Reed created the TLUD, and Dr. Winiarski invented the Rocket stove. The saying “We stand on the shoulders of giants” certainly applies to the stove community.

Larry led teams from ARC around the world starting in Central America, where the plancha stove was evolved, after he found that a floor tile called a baldosa made a long lasting and relatively low mass combustion chamber that was surrounded by wood ash, a great natural source of refractory insulation. Larry discovered that Rocket type stoves, like plancha stoves, can be described by ten design principles and that these simple engineering principles could be taught to indigenous people, mostly women, who were the experts in using the stoves. My memories of Dr. Winiarski, who was born in Nicaragua, are often about him having a wonderful time speaking Spanish as stoves were constructed and flavorful food prepared.

It is not an exaggeration to say that Larry had a heart of gold. He picked up sick kids and walked from the city dump in Managua to a distant hospital. He slept on cement floors for months at a time in Haiti. Larry lived as others lived in Africa for years and because of his character was loved and respected in villages worldwide. His Rocket stove found a place in people’s homes in the same way that Larry was cared for, accepted, and loved by strangers. Larry is missed by thousands of friends and he was blessed with a life well lived.

There will be a Celebration of Larry’s Life on Saturday, August 28, 2021 at 1:30 PM, at Colgan’s Island, 79099 Hwy 99 N in Cottage Grove, Oregon.

It can be challenging to find the time to read a book so here’s a ten-minute video introduction to “Clean Burning Biomass Cookstoves” (2020), our recent updating of the 2015 edition. Download the book for free on the publications page. We spent a significant part of last year rewriting most of the book trying to put in one place pretty much everything that ARC has learned in the last five years. The plan is to do the same in 2025.

The summary includes:

  • The energy ladder and renewable biomass
  • Fire is investigated in the lab
  • Stoves are designed by cooks in the field
  • Factories tell us how to help them
  • Chimneys and air exchange rates protect health
  • A new outside air model helps to predict PM2.5
  • Increasing heat transfer efficiency! No problem
  • Residence time is shorter than previously imagined
  • Metering and mixing get us most of the way to cleaner combustion
  • There are great new stoves!
  • Let’s move faster

Aprovecho Research Center is pleased to announce that it has just been awarded a $50,000 grant from The Osprey Foundation in support of expanding research into the connection between biomass combustion and climate change.

To date, a handful of lab and field studies have resulted in relatively little information on how stove/fuel interventions could impact emissions. The Gates funded GH Labs has partnered with us in this project because information is vitally needed to make sure that stove interventions are most productive.

Research has identified renewable biomass as carbon neutral but only when burned without making climate forcing emissions.  Aprovecho manufactures and sells the Laboratory Emissions Monitoring System (LEMS) as a tool to characterize cook stove performance. The LEMS enables ARC to develop stoves addressing climate, health, and effectiveness. It has become the centerpiece of more than 60 cookstove laboratories worldwide.

The LEMS measures thermal efficiency and the emissions rates of PM2.5, CO, CO2, and Black Carbon. Minimizing those emissions is important for addressing climate change and protecting human health. The effectiveness of the stoves is assured when cooks are deeply involved in designing them.

Non-methane hydrocarbons (NMHC) and methane contribute to a significant fraction of the global warming potential, especially from charcoal burning stoves, but to date have not been measurable with the LEMS.

The Osprey Foundation sponsored project goals are:

  • Adding the measurement of methane and NMHC to the LEMS.
  • Surveying the global warming potential of wood burning stoves and charcoal stoves and creating market driven designs that address climate/health/effectiveness.
  • Widely distributing open source information (including CAD drawings) describing how to minimize climate forcers in biomass stoves.

At the Leaders Summit on Climate hosted by President Biden, the U.S. government pledged to help countries achieve their climate ambitions through expanding access to clean cooking. We feel very lucky to be investigating how to manufacture improved biomass stoves that cook well, are affordable, and protect personal and planetary health. Thank you, Osprey Foundation!

Prices of carbon credits used by companies to offset their emissions are currently low, due to an excess of supply built up over several years.

According to recent research at the University of London, without the excess supply, prices would be around $15/tCO2e higher, compared to $3-5/tCO2e today. (tCO2e means tonnes of carbon dioxide equivalent, “carbon dioxide equivalent” being a standard unit for counting greenhouse gas (GHG) emissions.)

The paper predicts that the surplus will not last forever, with demand for carbon credits expected to increase five to ten-fold over the next decade as more companies adopt Net Zero climate commitments. This growth in demand should see carbon credit prices rise to $20-50/tCO2e by 2030, as more investment is required in projects that take carbon out of the atmosphere in the long-term. With a further increase in demand expected by 2040, carbon credit prices could rise in excess of $50/tCO2e.

Guy Turner, CEO of Trove Research and lead author of the study said “It is encouraging to see so many companies setting Net Zero and Carbon Neutral climate targets. What this new analysis shows is that these companies need to plan for substantially higher carbon credit prices and make informed trade-offs between reducing emissions internally and buying credits from outside the company’s value chain.”

Imagine the stoves that could be supported by a $20 price for an avoided tonne of carbon dioxide. Stoves with good thermal efficiency can save three tonnes or more per year making long lasting, super clean stoves with chimneys a great deal for carbon developers and investors.

And a great deal for consumers.

Report: https://trove-research.com/wp-content/uploads/2021/06/Trove-Research-Carbon-Credit-Demand-Supply-and-Prices-1-June-2021.pdf

When this sort of fire is maintained, a high mass Rocket stove can get close to Tier 3 for CO (less than 7.2g/MJd) and PM2.5 (less than 218mg/MJd).

Testing stoves means that many, many hours are spent watching the flames and pushing sticks of wood into the fire. We watch the real time emissions, water temperature, excess air, and temperatures in the combustion chamber on a computer screen as the testing continues. After hundreds of hours it becomes obvious that clean combustion has a certain “look.” For instance, when there is a lot of flame above the sticks the real time CO goes down on the computer screen. Without flame above the fuel, the gas rises up and is not combusted. That’s why charcoal can be dangerous, because burning charcoal does not create a lot of flame above the fuel.

When the wood sticks are changed into charcoal, the PM2.5 is dramatically reduced, as well. Pushing the unburned sticks into the fire creates smoke. Pushing the sticks in quickly makes a lot of smoke and pushing the sticks in slowly makes less smoke. Charcoal does not make much smoke and that’s one of the reasons that people like cooking with it. Feeding a fire is a compromise, as firepower and PM2.5 tend to rise together. A rocket stove can look OK as long as the sticks are fed slowly into the fire at less than about 2.5 kW. But at high power, Rockets start to smoke like crazy.

How can these two experiences be factored into a mathematical model of combustion? By using a video camera hooked up to a computer program? Residence time and temperature are easily measured, but the extent that turbulence occurs is not easily quantified. Engineers get past these sorts of problems by figuring out how to optimize mixing (using jets of air, for example), but a mathematical model is more easily filled in with numbers for other sorts of phenomena, such as the excess air ratio.

Both experiments and mathematical modeling shed light on how to make better stoves and hopefully complement each other. Arguments have been known to happen. I have been trying to figure out how to make clean burning biomass fires since 1989, and one thing has not changed since Dr. Winiarski started me on this path. I continue to be happier trying to answer questions that begin with the word “What” instead of “Why.”

Selling LPG in Rwanda

LPG (liquefied petroleum gas) is among the most important fuels for achieving clean cooking. Many countries are actively developing intervention programs. In a five year project starting in 2007, an Indonesian program converted over 50 million households cooking with kerosene to LPG. In 2016, India intensified their campaign providing free connections to LPG cylinders to “Below Poverty Line” homes. In China, gas and biomass fuels, the dominant energy fuels for cooking, are used by 44.8% and 32.1% of households, respectively. In 2014, 47.6% of rural cooks used biomass, whereas urban households were more likely to cook with gas (65.8%) (Applied Energy 2014, 136:692-703 Duan, et al.).

Even older LPG stoves burn cleanly. Five different LPG stoves were tested 89 times and described in a 2018 article. Two stoves were manufactured in China and obtained in a local market near Beijing. One was manufactured in Japan and purchased in Kampala, Uganda. Solgas Repsol Downstream Peru (an international LPG distributor) disseminated another stove. A worn-out appliance was obtained from a rural household in Cameroon  (Environ. Sci. Technol. 2018, 52, 904−915 Guofeng Shen, et al.).

  • The average thermal efficiency for the LPG cook stoves was 51 ± 6%.
  • Approximately 90% of the PM2.5 data was below the level of detection.
  • The other 10% of the stoves had an average PM2.5 score of 0.20 ± 0.16 mg/minute. (The WHO Emission Rate target is 0.23mg/minute).

However, in a country like Rwanda the switch from wood and charcoal to LPG is slow. In 2019, only 2% of cooks were using LPG in the cities. 64% used a charcoal or wood stove and in rural areas “the use of clean fuels is negligible” (The World Bank, 2019). 93% of rural households use wood, 6% of charcoal, and 0.2% of gas (National Institute of Statistics Rwanda, 2019).

The cost of LPG is a big factor. “Prices are much higher in rural areas and upcountry towns as retail traders factor in transport logistics. Rising prices for cooking gas in the country have sparked concerns of likely reversing gains made in the push for a clean cooking solution as more households turn to wood and charcoal.”  

Marie-Jeanne Uwanyiringira, a businesswoman who sells LPG, says that the fluctuation in prices has caused frustration among consumers. “When someone buys gas from me at RWF 3,500 and the next month I tell them that it is RWF 5,500, ($5 USD) they don’t seem to understand that it is not the seller’s fault.” (Rwanda Today, April 9, 2021).

WASHINGTON, DC, April 22, 2021 — At the Leaders Summit on Climate hosted by President Biden, the U.S. government pledged to help countries achieve their climate ambitions through expanding access to clean cooking.

“Providing clean energy to households is critical to achieving global climate and sustainable development goals,” said Helena Molin Valdés, Head of the Climate and Clean Air Coalition Secretariat. “Smoke from fireplaces, cook stoves, and lighting is responsible for more than half of human-made black carbon emissions and millions of premature deaths from household air pollution. The Climate and Clean Air Coalition partners welcome the U.S. government’s re-engagement in the issue and look forward to cooperating to put in place solutions that improve lives and protect the planet.” 

The United Nations Foundation’s Clean Cooking Alliance

Would it be helpful to add climate metrics to the health-based ISO 19867? Currently, Scoring Tier 5 for emissions of PM2.5 and CO means that safety is assured in average households. As the score decreases from Tier 5 to Tier 0 the estimated amounts of ill health from breathing smoke and gas increase.

During ISO 19867 testing under an emissions hood, the fuel use, thermal efficiency and emissions of CO2, CO, and PM2.5 are measured and the data is used to determine a ranking on the voluntary tiers of performance. ARC multiplies lab data by a factor of three to estimate in field emissions. Usually in cook stoves, the CO2 has by far the largest effect on climate change. However, PM (black to white in color), CO, methane (CH4), non-methane hydrocarbons (NMHC), and nitrous oxide (N2O) also have varying amounts of climate forcing potentials. Currently, CO2, PM2.5, and CO are measured as a part of ISO 19867. ARC also determines the amount of black carbon in every test (using a filter) of PM2.5. Adding methane and non-methane hydrocarbons to the measured gases is not difficult. In fact, Sam is working on adding them to the LEMS right now.

The effects of inhaling particulate matter have been widely studied in humans and animals. They include asthma, cardiovascular disease, and premature death. Particles can also have an extremely strong effect on the atmosphere by absorbing and/or scattering the sun’s incoming radiation, depending on their color. The black particles have an approximate warming potential by weight of 680 times that of CO2 (Roden and Bond, 2006; Bond and Sun, 2005).

Total global warming impact, grams CO2 equivalent on a 100-year time-frame, per liter of water boiled and simmered for 30 minutes, normalized for starting temperature and fuel moisture content. Inclusive of CO2 and all PICs.

When we studied the global warming impact of five cook stoves burning biomass, CO2 was shown to be the major component, as seen above. At the time (2008), estimates of the various warming potentials were:

CO2….1  (IPCC, 2007)
CO….1.9  (IPCC, 2007)
CH4….25  (IPCC, 2007)
NMHC….12  (Edwards and Smith, 2002)
N2O….298  (IPCC, 2007)
PM – Black….680  (Roden and Bond, 2006; Bond and Sun, 2005)
PM – White….-50 (Estimate – Bond, 2007)

Warming potential, 100-year, CO2 equivalents

  • When biomass is harvested sustainably, the CO2 emissions from biomass-burning are considered to be greenhouse-neutral.
  • Although N2O is a strong climate-forcing constituent, emissions from the wood- and charcoal-burning stoves were very low, contributing less than 1% to the overall warming potentials.
  • The data suggests that there are biomass stoves that can be designed to (1) reduce the fuel used to cook, (2) reduce health-damaging emissions and (3) address climate change. The considerable differences in climate-changing emissions from the stoves in this study should be noted. Large-scale use of cleaner burning stoves might well reduce global warming effects, especially when the biomass is harvested in a “carbon neutral” manner. (N. MacCarty, D. Ogle, D. Still, T. Bond, C. Roden, Energy for Sustainable Development, 2008)