Forced Draft and High Mass Combustion Chambers

Years of experimenting with stoves at ARC taught us that a high mass combustion chamber absorbs a lot of heat that could be going into the cooking pot. That led us to presume that efficient combustion chambers had to be lightweight, which are harder to make. Once we started experimenting with forced draft, we were surprised to learn that adding forced draft (FD) to a TLUD or a Rocket stove increases the temperature of the gases and largely overcomes the negative effect of a high mass combustion chamber.

The Oorja FD-TLUD and the FD-CQC mud brick stoves generate temperatures of around 1,000°C in the combustion chamber. The option to use a high mass combustion chamber lowers cost and dramatically increases durability when designing forced draft, health protecting, affordable, clean burning, carbon neutral stoves.

The combustion chamber in the pellet burning FD-Oorja that we have in the lab is made from castable refractory ceramic and is over 20 years old. The retail price of the 400,000 British Petroleum Oorja stoves sold in India was around $18. The CQC Rocket combustion chamber is less expensive and is manufactured from sand, clay, and cement. With the addition of forced draft via a Jet-Flame, it reaches Tier 4 for  thermal efficiency and PM 2.5.

To replace health protecting stoves that use natural gas (a fossil fuel) it seems likely that FD-TLUDs and FD-Rockets can be built with lower cost and 10 year durability combustion chambers. The renewably-harvested-biomass fueled stoves need to be manufactured and field tested, and there is a lot of ground to be covered (an understatement), but it’s great that harder-to-make low mass combustion chambers may not be necessary.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *