Testing the Oorja Stove under the LEMS hood.

There are many forced draft TLUDs that are quite similar to Dr. Tom Reed’s 2001 version, the WoodGas stove. The Oorja stove can be about as clean burning but has several obvious differences: a high mass refractory ceramic combustion chamber, much bigger secondary air holes, and high firepower. Like other forced draft TLUDs the turn down ratio, created by limiting the combustion air, is narrow. The Mimi-Moto had to turn to a smaller combustion chamber for simmering to achieve Tier 4 for low power metrics. It’s a problem for Forced Draft TLUDS.

I have been a fan of the Oorja stove since 1999. In 2003, when I was living in India, hundreds of thousands of British Petroleum Oorja stoves were in use, burning pellets made from field residue. It’s been fascinating recently to read Dr. H. S. Mukunda’s 2010 paper describing the development of the Oorja.* When his team tested the lifespan of a metal combustion chamber it was only about 12 months and cast iron was expected to last about twice as long. The team developed a ceramic combustion chamber to create a better, longer lasting stove. I’m testing an Oorja stove with ceramic combustion chamber that is 20 years old!

Mr. Prasad Kokil from the San Jay Group writes: “We had developed this Oorja stove for BP in our company. We developed the ceramic refractory for the Oorja at that time. Our Elegant Model (now for sale) has a ceramic refractory combustion and is a forced draft TLUD”.

Large secondary air holes near the top of the combustion chamber.

Dr. Mukunda and team decided that at a burn rate of 12 grams per minute the primary air should be 18 g/min, and the secondary air was set at 54 g/min. The 18 secondary air holes, just below the top of the combustion chamber, are larger than in other FD-TLUDs at 6.5 mm in diameter creating a velocity of 1.8 meters per second. Using larger holes means that a low wattage computer fan supplies air jets with sufficient volume and velocity. Emission measurements made by the development team, carried out at fuel consumption rates of 12 and 9 g/min, showed that the CO emissions were 1 and 1.3 g/MJ whereas particulate emissions were 10 and 6 mg/MJ for the high and low power levels. When burning the made charcoal, CO rose but did not exceed the Indian standards.  

The Oorja stove has been tested at various times in our lab with impressive results. Learning from Dr. Mukunda and team how to make stoves that are super clean burning and last a really long time is an important development. Thanks for such a great stove!

* Gasifier stoves: Science, technology and field outreach H. S. Mukunda, et al., CURRENT SCIENCE, VOL. 98, NO. 5, 10 MARCH 2010 

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *