Dr. Tom Reed, Dr. Alexis Belonio, Dr. Paul Anderson and Kirk Harris have refined TLUD technology

A natural draft TLUD can be as clean burning as a forced draft TLUD burning wood pellets. On the other hand, a natural draft Rocket stove needs a fan to be clean burning.

Dr. Tom Reed’s forced draft (FD) Woodgas stove achieved an emissions rate of 2mg/min of PM2.5 with pellet fuel (ARC, 2015). The Kirk Harris natural draft (ND) TLUD emitted 0.7mg/min of PM2.5, when tested at Lawrence Berkeley National Lab with pellets.

WHO Intermediate Emission Rate Targets

Unvented stoveVented stove
PM2.51.75 mg/minPM2.5   1.75 mg/min
CO 0.35 g/minCO   1.45 g/min

ND TLUDs tend to be pretty tall to generate necessary draft. A FD TLUD can be shorter since the fan creates the draft. Taller ND TLUDs can be expensive to manufacture. Precise control of primary air enabled a 3 to 1 turn down ratio in the Harris ND TLUD, difficult to achieve in a FD TLUD. (The FD Mimi-Moto, for example, has two combustion chambers, small and large, to provide cooks with high and low power).

Modern ND TLUDs

  • The primary air is adjusted to control the rate at which pellets are turned into combustible gases.
  • The secondary air jets cover the fuel bed.
  • A hole in the concentrator plate above the secondary air jets forces the flame into a vertical cylinder.
  • The cylinder of flame then enters static devices that create further mixing of air, flame, and gases.
  • The flame is shortened and does not touch the bottom of the pot where gases can condense into smoke.
Static mixers in the Kirk Harris 0.7mg/min PM2.5 ND TLUD
Typical Charcoal Stove
Oorja FD TLUD

Charcoal stoves are batch loaded like TLUDs (top loaded up draft stoves), but they differ greatly in how air flow is used to encourage combustion. A charcoal stove has lots of primary air blowing up into the fuel. A TLUD uses a small amount of primary air to create a relatively constant amount of woodgas that is then combusted by a mixture of secondary air and flame above the fuel bed. The large amount of primary air in a charcoal stove tends to create the fire underneath the fuel, while the secondary air jets in a TLUD concentrate the fire above the batch of fuel.

If a TLUD allowed as much primary air as a charcoal stove into the bottom of the fuel bed, too much wood gas would be made and the TLUD would be smoky. I wonder if charcoal stoves could be patterned after TLUDs? Could a charcoal stove be top lit with jets of secondary air and flame on top of the batch of fuel? Would such an arrangement result in better performance? Would added secondary air in a charcoal stove maintain the fire on top of the fuel that would burn up the woodgas (predominantly CO in a charcoal stove)? Might this increase heat transfer efficiency since the temperatures (convection and radiation) might be hotter?

When Sam Bentson and Ryan Thompson studied how to improve charcoal stoves in the DOE 2011 project, they found that adding pre-heated natural draft jets of air did help to create more flame where it’s needed, right under the pot. Unfortunately, they also experienced that charcoal makes less flame than wood and covering the entire top of the fuel bed with flame (as in a TLUD) is difficult. Forced draft secondary air might be more successful, especially since charcoal stoves are usually short and do not generate needed velocities. To be most effective, the jets of air/fire should meet in the middle of the combustion chamber and cover the entire fuel bed. It seems to be best to use the minimum velocity necessary since too much air only cools the fire (Udeson, D.J., 2019, University of Washington).

We’ll try it and report on the results.

Charcoal Stove Design Principles (Ryan Thompson)

  1. Size the combustion chamber for the required task. Whatever fuel is loaded into the stove will be burned at a rate proportional to the amount of air made available to it. In most cases, more fuel means higher firepower because there is always excess air. For small amounts of food/water, where not much power is required, either load a small amount of fuel into the stove, or use a stove with a small combustion chamber. For cooking lots of food at once, use a stove with a big combustion chamber.
  2. Charcoal stoves can have a high turn-down ratio. If the primary air supplied to a charcoal fire is reduced close to zero, the fuel will still keep burning. When the air supply is increased, the firepower will also increase. Normally there is a spike in CO when the air supply is increased sharply, but it tends to stabilize once the firepower comes back up.
  3. Use pre-heated secondary air jets to burn up the CO. Most charcoal stove designs have air coming in from the bottom and sides of the fuel bowl. The air must pass through the burning charcoal before it gets to the top of the fuel where the CO is being emitted. If hot air is added above the charcoal, it is available to combust the CO. Try to keep the bottom of the batch of charcoal as cold as possible and burn down from the top of the batch of the fuel.
  4. Position the pot close to the charcoal. This maximizes heat transfer from radiation.
  5. Insulate the stove body. Insulate the stove body until a temperature of 620˚C or higher is achieved above the burning fuel. Insulation needs to be lightweight and trap still air. Examples of good insulation are: ceramic fiber, rock wool, wood ash, sheets of foil, etc.
  6. Use small channel gaps between the pot and the stove. The pot can be located very close to the top of the burning charcoal. A skirt with a 6mm channel gap around the pot helps increase the heat transfer efficiency from convection. Both convective and radiative heat transfer are important in a charcoal stove.
  7. Maintain a constant cross sectional area throughout the stove to start the design process and reduce as directed by experimentation under the emissions hood. This will help to keep the velocity of the draft as high as possible.
  8. Supply a large amount of primary air to assure sufficient firepower. Make the primary air door large enough to boil the water quickly. The door can be partially closed to reduce power when desired. The door has to be almost airtight to reduce firepower sufficiently when simmering in a pot with a lid.

Years of experimenting with stoves at ARC taught us that a high mass combustion chamber absorbs a lot of heat that could be going into the cooking pot. That led us to presume that efficient combustion chambers had to be lightweight, which are harder to make. Once we started experimenting with forced draft, we were surprised to learn that adding forced draft (FD) to a TLUD or a Rocket stove increases the temperature of the gases and largely overcomes the negative effect of a high mass combustion chamber.

The Oorja FD-TLUD and the FD-CQC mud brick stoves generate temperatures of around 1,000°C in the combustion chamber. The option to use a high mass combustion chamber lowers cost and dramatically increases durability when designing forced draft, health protecting, affordable, clean burning, carbon neutral stoves.

The combustion chamber in the pellet burning FD-Oorja that we have in the lab is made from castable refractory ceramic and is over 20 years old. The retail price of the 400,000 British Petroleum Oorja stoves sold in India was around $18. The CQC Rocket combustion chamber is less expensive and is manufactured from sand, clay, and cement. With the addition of forced draft via a Jet-Flame, it reaches Tier 4 for  thermal efficiency and PM 2.5.

To replace health protecting stoves that use natural gas (a fossil fuel) it seems likely that FD-TLUDs and FD-Rockets can be built with lower cost and 10 year durability combustion chambers. The renewably-harvested-biomass fueled stoves need to be manufactured and field tested, and there is a lot of ground to be covered (an understatement), but it’s great that harder-to-make low mass combustion chambers may not be necessary.

Testing the Oorja Stove under the LEMS hood.

There are many forced draft TLUDs that are quite similar to Dr. Tom Reed’s 2001 version, the WoodGas stove. The Oorja stove can be about as clean burning but has several obvious differences: a high mass refractory ceramic combustion chamber, much bigger secondary air holes, and high firepower. Like other forced draft TLUDs the turn down ratio, created by limiting the combustion air, is narrow. The Mimi-Moto had to turn to a smaller combustion chamber for simmering to achieve Tier 4 for low power metrics. It’s a problem for Forced Draft TLUDS.

I have been a fan of the Oorja stove since 1999. In 2003, when I was living in India, hundreds of thousands of British Petroleum Oorja stoves were in use, burning pellets made from field residue. It’s been fascinating recently to read Dr. H. S. Mukunda’s 2010 paper describing the development of the Oorja.* When his team tested the lifespan of a metal combustion chamber it was only about 12 months and cast iron was expected to last about twice as long. The team developed a ceramic combustion chamber to create a better, longer lasting stove. I’m testing an Oorja stove with ceramic combustion chamber that is 20 years old!

Mr. Prasad Kokil from the San Jay Group writes: “We had developed this Oorja stove for BP in our company. We developed the ceramic refractory for the Oorja at that time. Our Elegant Model (now for sale) has a ceramic refractory combustion and is a forced draft TLUD”.

Large secondary air holes near the top of the combustion chamber.

Dr. Mukunda and team decided that at a burn rate of 12 grams per minute the primary air should be 18 g/min, and the secondary air was set at 54 g/min. The 18 secondary air holes, just below the top of the combustion chamber, are larger than in other FD-TLUDs at 6.5 mm in diameter creating a velocity of 1.8 meters per second. Using larger holes means that a low wattage computer fan supplies air jets with sufficient volume and velocity. Emission measurements made by the development team, carried out at fuel consumption rates of 12 and 9 g/min, showed that the CO emissions were 1 and 1.3 g/MJ whereas particulate emissions were 10 and 6 mg/MJ for the high and low power levels. When burning the made charcoal, CO rose but did not exceed the Indian standards.  

The Oorja stove has been tested at various times in our lab with impressive results. Learning from Dr. Mukunda and team how to make stoves that are super clean burning and last a really long time is an important development. Thanks for such a great stove!

* Gasifier stoves: Science, technology and field outreach H. S. Mukunda, et al., CURRENT SCIENCE, VOL. 98, NO. 5, 10 MARCH 2010 

Paul Anderson TCHAR stove

In 2011, Dr. Paul Anderson described how the made charcoal in a TLUD could drop into a charcoal stove base and then be used to cook food. The top of the TLUD stove was removed after the charcoal was made and the pot was placed on the lower base to continue cooking. ARC used the same idea in a TLUD stove that was tested by Jim Jetter, but the wood burning and subsequent charcoal burning happened in the same combustion chamber. The TLUD was shorter, so the lower firepower in the charcoal supplied enough energy to a covered pot with a tight skirt to keep simmering. The ARC TCHAR stove was clean burning and scored well in a series of tests. (Jetter, et al., 2012, Environmental Science & Technology 46(19):10827-34).

Dr. Anderson’s 2011 TCHAR stove. The top (silver) portion is removed after the fuel has become charcoal, and the pot is placed directly on the base for simmering.

Using the made charcoal to simmer food to completion increases thermal efficiency. In cities where biochar may be less desirable, a known amount of fuel can bring the food to boil (burning the wood) and then gently simmer the food until it’s done (burning the made charcoal) without much tending. To preserve the biochar for agricultural use the primary air that goes up into the batch of fuel is limited and the fire is extinguished. In a TCHAR more primary air helps to decrease the smoke made during the transition from wood to charcoal burning and helps the charcoal to completely combust.

The Turn Down Ratio in a 2021 ARC TCHAR is about 5 to 1, so the pot needs a lid and a tight skirt to keep boiling. Using 700 grams of biomass pellets the stove boiled five liters of water in 27 minutes and kept boiling for two hours (covered pot/tight skirt). The TCHAR is another TLUD variation and, who knows, may be useful somewhere?

Burning wood and then made charcoal results in a large turn down ratio.
sticks and charcoal start to combust in a rocket stove

The Jet-Flame was developed from combustion concepts used in fluidized beds and TLUDs.

Fluidized Bed

fluidized bed combustion diagrams

“In its most basic form, fuel particles are suspended in a hot, bubbling fluidity bed of ash and other particulate materials (sand, limestone etc.) through which (under air) jets of air are blown to provide the oxygen required for combustion or gasification. The resultant fast and intimate mixing of gas and solids promotes rapid heat transfer and chemical reactions within the bed.”   https://en.wikipedia.org/wiki/Fluidized_bed_combustion

Top Lit Up Draft

diagram explaining how a top loaded up draft stove works

The TLUD uses under air flowing up through the fuel to transport wood gas into the hot layer of charcoal and flame above the fuel assisting more complete combustion efficiency.

Cleanly Starting the Jet-Flame

High velocity under air jets blow up into the lit charcoal placed on top of small sticks of wood. When the charcoal and wood are on fire, long pieces of wood are pushed into the made charcoal to start a Rocket Jet-Flame without making visible smoke. The sticks of wood are burned at the same rate as the continual production of charcoal creating a cleaner combustion process related to a fluidized bed and the TLUD.

sticks and charcoal start to combust in a rocket stove

Charcoal over wood is lit.

bed of charcoal in rocket stove

The charcoal becomes superheated with jets blowing up into the pile.

sticks burning in rocket stove

After 30 seconds, long sticks of wood are pushed against the burning charcoal creating flame.

Chart showing how more air exchanges reduces indoor air pollution from cooking
Chart describing the influence of air exchange per hour rates on the concentration of PM2.5 in a 30 cubic meter room. Higher air exchanges equal lower PM2.5 concentrations.
Using the ISO box model, Sam Bentson has calculated how increased ventilation helps a classic Rocket stove (around 30 mg/minute of PM2.5) and a modern TLUD burning pellets (about 5mg/minute PM2.5) to protect health.

In the lab, we are used to thinking of the ISO Tiers as static, based on how much pollution enters a 30 cubic foot kitchen during four hours of cooking with 15 air exchanges per hour. However, in 2018 ISO published 19867-3 that further explains how, for example, increasing the air exchange rate (ACH) changes the Tier rating. Generally, doubling the air exchange rate cuts pollution (PM2.5 and CO) in half.

In a low ventilation situation (10 ACH), Tier 4 requires that the emissions of CO are lower than 2.2 grams per megajoule delivered to the pot (g/MJd). But in a higher ventilation condition (30 ACH) the stove can be three times dirtier, emitting up to 7 g/MJd, and still be in Tier 4. Cooking outside is often employed by the cooks we work with because smoke is bothersome and unhealthy.

ISO 19867-3 reports that studies of air exchange rates have found a lot of variation in ventilation, from 4 ACH in very tight buildings to 100 ACH outside in the fresh air. When I lived on a ranch in Mexico, most of the cooking took place outside under a veranda (which also made it easier to smell the wonderful homemade coffee brewing in the early mornings). When Sam Bentson carefully measured the ventilation rate under our veranda in Oregon he also found that when a gentle breeze was blowing (2 MPH) the air exchange rate per hour was around 100.

At 100 ACH, with so much dilution occurring outside, achieving Tier 4 for PM2.5 and CO is easier. In our experience, the most successful and cost effective interventions are situation dependent. We find that a combination of approaches to protecting health enables a welcome adaptability to the actual and interwoven circumstances.