Testing in the laboratory and in the field

Testing in the laboratory and in the field

It is important to remember that in the Aprovecho lab, the 3 Stone Fire has used less wood and made less pollution than cooking fires and high mass stoves operated by cooks in the field. The fires in the lab tests were carefully made using dry and uniform sticks of Douglas fir fed into the fire in a controlled way to optimize the performance. Well-constructed 3 Stone Fires protected from wind and tended with care scored between 20% and 30% thermal efficiency.

Open fires made with moister wood and operated with less protection from the wind can score as low as 5%. The operator and the conditions of use largely determine the effectiveness of operation. Stoves have to be tested with careful repetition in order to achieve statistical confidence in the results. Because there are so many differences between laboratory and field results, it is difficult to use the results of laboratory testing to predict exactly how stoves will perform in the real world.

However, side-by-side comparisons can be used to generally estimate performance. An automobile that gets 40 miles per gallon on a dynamometer is more likely to use less gas driving down the highway than a car that only gets 20 miles per gallon in the same test. A cooking stove that used less fuel or made less pollution in a standardized test will, one hopes, translate into reductions in the field, but field surveys are needed to establish the actual performance. Field tests are essential to also learn lots of important things, such as if the cook likes the stove, whether the stove product will be successful in the market, and how much PM2.5 and CO is inhaled by members of the household.

In our opinion, no lab test can replace going into the field and learning from reality. And, being taught about stoves from cooks is one of the most fun parts of this job.

Happy Holidays Clean Combustion Techniques

Happy Holidays Clean Combustion Techniques

1.)    When wood is burned a lot of smoke is produced but the made charcoal at the tip of the wooden stick contributes heat but does not make much smoke. Rocket Stove: Increase the time that the charcoal at the tip is burning. TLUD: A layer of hot charcoal covers the fresh wood.

2.)    If the stove begins smoking the rate of reaction (solid turning into gas) is probably too fast. Too much wood gas is being produced and un-combusted fuel is escaping. Rocket Stove: Pull the sticks back until just the tips are burning. TLUD: Reduce the primary air.

3.)    Mixing the smoke, gases, flame, and air can reduce emissions dramatically. Rocket Stove and TLUD: Cut up the laminar flames with natural draft mixing devices. When using secondary air increase the draft until fast moving jets completely cover the top of the burning fuel.

4.)    Create a space filled with fire that forces the smoke, gases, flame, and air to mix more completely. Rocket and TLUD: Orifices successfully increase mixing.

5.)    Increase the dwell time to improve combustion efficiency. Rocket and TLUD: Do not make the mixing chamber above the fire too short. With sufficient draft install fixed fan blades to induce swirl that makes at least two revolutions.

6.)    Secondary air more effectively enters flame when the pressure difference is assisting the mixing process. Rocket and TLUD: In natural draft stoves the pressure is lower in fast moving flame. Add higher pressure secondary air downstream of the mixing device.

filter setup

HEPA home furnace filter reduces PM2.5 emissions

HEPA home furnace filter reduces PM2.5 emissions

There are a number of methods to reduce personal exposure to household air pollution associated with using biomass fuel for the daily cooking and heating taking place in nearly 40% of global households. These most commonly include 1.) Increasing ventilation rates, 2.) Installing a chimney and 3.) The use of cleaner fuels and cook stoves. A recent ARC paper available (free for a limited time) at:


investigates two less-commonly considered methods: 1) Reducing exposure through filtration and capture of PM2.5 and 2) Avoiding making emissions by using made charcoal and retained heat for cooking.

filter setup

The smoke is pulled through the filter and less smoke exits the room

When cook stoves are operated inside an enclosure from which smoke is pulled through an inexpensive HEPA-type furnace filter before exiting to the outside, the personal exposure levels, room concentrations, and external pollution are reduced. To test this method, an enclosure was built from which a box fan pulled the air and PM2.5 through four different furnace filters. The rate of PM2.5 production (mg/min) exiting the filter was monitored with gravimetric measurement under a LEMS emissions hood during the high and low power phases of the Water Boiling Test 4.2.3 conducted on a biomass rocket stove with forced draft.

The average of seven baseline emissions tests with no filter was 7.5 mg/min of PM2.5. The average of seven tests using the highest quality furnace filter (3M 2200) was reduced to 1.5 mg/min and the difference was significant at 95% confidence. The use of retained heat to simmer dramatically reduced emissions of PM2.5 by burning the boil-phase-made-charcoal and using retained heat in the stove while 5 liters of covered water were simmered for 35 minutes.

Refractory Metals at 1,000 Hours in Salty Biomass Combustion Chambers: Big Problems

Energy for Sustainable Development 37 (2017) 20–32, Alloy Corrosion Considerations in Low-Cost, Clean Biomass Cookstoves for the Developing World Michael P. Brady, et al.

Michael Brady and others examined the following:

“Corrosion evaluation under cookstove-relevant conditions was studied by two methods: 1) lab furnace testing and 2) in-situ exposure in an operating cookstove. The lab furnace testing was conducted in air with 10 volume percent of H2O to simulate water vapor release from burning biomass, and direct deposition of salt onto the test samples to simulate the burning of highly corrosive biomass feedstocks. In particular, relatively high levels of salt species are encountered in many types of biomass and can lead to significantly accelerated alloy corrosion rates (Antunes and de Oliveira, 2013; Baxter et al., 1998; Saidur et al., 2011; Okoro et al., 2015). The in-situ cookstove testing was conducted using wood fuel that was pre-soaked in a salt water solution to yield accelerated, highly corrosive conditions.”

“Each day of testing, cookstoves were burned continuously for an average of ~6 h. The average fuel consumption rate was 570 g/h. To determine the range of temperatures that the alloy test samples would experience, a thermocouple was placed inside the chimney of each stove at the same height as the coupon fixture. Typical combustion chamber temperature profiles for the cookstoves, where test coupons were placed, are shown in Fig. 2. The average gas temperature range during steady state in-situ testing was 663 °C ± 85 °C”

“Much faster corrosion rates were observed in the 800 °C lab furnace testing where evaluation of most alloys stopped after 500 h of exposure due to excessive corrosion. Of the alloys tested to 1000 h, only the FeCrSi and pure Ni samples exhibited good corrosion resistance. The FeCrAlY and 310S alloy samples were consumed through-thickness in some crosssection locations.”

“Type 201 stainless steel, type 316 L stainless steel, and the 12 and 20Ni AFA alloys all exhibited relatively poor corrosion resistance in the in-situ cookstove testing, with metal losses in excess of −200 μm after only 500 h of exposure, consistent with the lab furnace trends. The types 310S and 446 stainless steels exhibited moderately worse corrosion resistance, with metal loss values of −190 μm and -230 μm after 1000 h. Despite exhibiting the best corrosion resistance in the lab furnace testing, the pure Ni suffered from −300 μm metal loss after only 500 h in the in-situ cookstove testing.”

“These findings indicate that ferritic FeCrSi alloy compositions in the range of ~ Fe-(13-17Cr)-(2–3.5)Si-(0.2–1)Mn-(0.3–0.7)Ti-(0.1–0.6)C wt.% show promise for use in biomass cookstove combustor components.”

In salty conditions should we switch to the use of refractory ceramic, I wonder?

Dean Still


Protecting Health with Biomass Cooking Stoves

justaIt was great to attend the Global Alliance Forum a week ago in Delhi, meeting and learning from so many colleagues. Dr. Omar Masera presented a paper that summarized a survey of fugitive emissions from plancha type stoves in Mexico. The World Health Organization Indoor Air Guidelines figure that 25% of the total emissions going up a chimney end up inside the house because stoves and chimneys are leaking that much into the room air.

It’s starting to rain here in Oregon and on my daily drive to work smoke is pouring out of chimneys again while the indoor air stays clean as the draft in the chimney puts the emissions outdoors. These chimneys are well built and are maintained so almost no smoke pollutes the home. The chimney is located several feet above the peak of the roof to encourage the pollution to drift away from the windows and doors. Without chimneys the high levels of smoke emitted from these heating stoves would make living indoors very uncomfortable.

The five plancha cooking stoves in the study were also not very clean burning (Tier 1 for PM 2.5 for high and low power) but results from 54 tests showed that fugitive emissions into the room were only 1% of the totals resulting in Tier 4 for Indoor Emissions of PM 2.5 and CO (Medina, et al., Development Engineering Volume 2, 2017, pages 20-28). Why have chimneys, the historical, relatively inexpensive, and most practical technology to protect health, not become a most popular intervention? At ARC we try to combine clean combustion and superior heat transfer efficiency with a chimney so that the stove brings a synergy of improvements to the consumer.


Methods to Improve WBT Repeatability

At the InStove HEARTH conference Sam Bentson gave a talk about how to make WBT laboratory test results of rocket stoves more repeatable. The presentation is available here, and the accompanying video may be viewed here. Thank you to InStove for organizing a great event.

InStove HEARTH Conference

Our friends at InStove are hosting a stove conference next weekend. We hope to see you there. Click below for the schedule, and read on to learn more.


Household Energy and Renewable Technology for Humanity Conference to take place in coming weeks
Thursday, August 17th to Sunday, August 20th in Cottage Grove, Oregon, InStove and Burn Design Lab will co-host the annual “Household Energy and Renewable Technology for Humanity” (HEARTH) conference. HEARTH brings together: implementers, funders, researchers, volunteers, and other interested stakeholders in the international, community-based development sector.
Each day of the event covers a specific theme: Thursday is dedicated to discussions between funders and nonprofits; Friday focuses on program development and collaborative partnerships; Saturday covers renewable energy and cookstoves; and Sunday concentrates on resilience and disaster preparedness. Camping on the InStove campus is free to attendees, any or all days, and the event immediately precedes the 2017 Solar Eclipse (free viewing glasses will be available to all participants and their families). Childcare is provided. Register at: www.instove.org/hearth2017.
dean, kirk, dennis cat pee 2016 crop

Most Commercially Successful Stove in your Area?

ARC is involved with many cook stove projects around the world. Mostly we assist with technical information to improve emissions and performance and to set up stove laboratories. Once in a while we help commercial projects to manufacture stoves, get carbon credits, or write business plans. Each year we host at least one hands-on conference, “Stove Camp“, during which inventors and policy makers learn from each other to advance the state of the art of biomass cook stove technology. Could you help us to get a feeling for the ‘big picture’ of the commercial stove market so that we can better direct the creative energy during our next Stove Camp? We very much appreciate your help!


Stove camp attendees


We hope that you might take a moment to inform us about stoves sold in your country.  Could you provide responses to the following questions in a reply to this email? THANK YOU!!!

1.)    Where are you located?

2.)    What type of stove is purchased most often?

Charcoal Stove

Rocket Stove


Plancha stove

Institutional stove

Coal stove

Other stove

3.)    Can you estimate how many stoves are sold?

4.)    Where are the stoves purchased?

5.)    About how much does the stove cost?

6.)    If you were going to sell a stove in your region what are the two most important features it should have?

7.)  Would folks purchase a stove with a chimney?

THANKS AGAIN!        All answers are private, of course.




Dean and Sam