Integrated stove for heating, cooking, electricity

Watch a video of the downdraft rocket stove that ASAT Inc. will show in Washington D.C. at the Alliance for Green Heat/DOE sponsored Wood Stove Design Challenge from Nov 9 to 13. ASAT gratefully acknowledges support from the US Environmental Protection Agency under EPA SBIR contract number EPD18009.

See an introduction to the Integrated Stove on Youtube:

Long sticks are placed vertically in the combustion chamber where only the tips burn. A weight pushes the wood down as the ends turn into soft charcoal. Cooling fins on the top half of the feed tube help keep only the tips of the sticks burning. The room air is heated by the tall heat exchanger and cooking is possible on top of the cylinder.

The stove features a thermoelectric generator near the coals to create 18 W of electricity when the stove is running at its 10 kW high power setting. The electricity is distributed to two USB ports for high speed cell phone charging and LED lighting. Aluminum fins protrude into the combustion chamber to bring heat to the hot side of the generator, and a radiator on the bottom of the stove draws the heat away from the cold side and into the room.

It has been quite nice to have a warm lab as the temperature outside drops. You will certainly enjoy it during our post ETHOS TLUD summit.


ARC has built and used two Test Kitchens and now, has by far the best one, built by Andy McClean and the three summer interns. We are looking at the distribution of smoke and the effect of opening doors and windows. Past tests with the early test kitchens showed that smoke stratified by height with the highest concentrations near the ceiling. Makes sense to cook near the floor! Opening the door dramatically lowered both PM and CO. (See:  Test Results of Cook Stove Performance, page 68)

Test kitchen
Andy McClean, Chuang Li, Katie Cushman, and Jon Au built the test kitchen.

The new Test Kitchen is a bit of an improvement. It has a volume of 30 cubic meters and the air exchange rate is controlled by 48 electric fans that are evenly spaced around the top perimeter of the building. Openings (48) along the bottom perimeter let dilution air in the test kitchen.

For the first experiment in the test kitchen the air exchange rate was determined using the tracer gas decay method (CO from a charcoal stove). The speed of the fans was adjusted until 15 ACH was measured. The smoke distribution while conducting water boiling tests was measured using 30 light scattering based PM detectors (HAPEx) that were hung from the ceiling and evenly spaced throughout the volume. The emissions rate of the rocket stove was measured using an ARC PEMS that was fitted with a partial capture probe and a gravimetric system for measuring PM2.5 (new development!). The gravimetric measurement of PM2.5 was used to calibrate the HAPEx. The tester fed the fire from an opening in the side of the test kitchen so as not to be exposed to the smoke from the fire. The test kitchen was built inside a large barn that had a fan-controlled cross ventilation. The background smoke concentration was recorded during the tests.

Results from the preliminary analysis show that there was vertical stratification, that the smoke in the room was evenly mixed from side to side, and that the average room concentration was similar to that predicted by a single zone box model. Stay tuned for more results!

If wood gas passes into flame, it can ignite and less un-combusted smoke escapes. Which of the following patterns has the greatest potential for clean burning? Maybe “the devil is in the details”?

  • The pattern that Dr. Winiarski often tries is downdraft/down feed. The wood is burned at the bottom of a vertical stick that can fall down as it is consumed. Air is pulled down alongside the sticks and into the fire. The charcoal falls below the sticks and in front of the flame path as flame is pulled horizontally into an insulated space by the draft in the Rocket short chimney.
  • Side feed/side draft is how most people feed a fire. The sticks are pushed into the fire as they burn. In this pattern, the fire creates charcoal that lies underneath the burning sticks of wood and helps to keep the fire going. When the tips of the sticks burn combustion is fairly clean. The sticks and fire are directly under the short chimney in the Rocket stove and the flame is pulled up towards the pot.
  • Top Lighting a batch of fuel. Sticks, for example, are loaded vertically, packed fairly tightly and hold each other up in a crucible. The entire top of the fuel bed in lit and is on fire. The fire slowly travels down into the crucible. The wood gas rises and enters the fire from below.

If you wanted to minimize escaping smoke would you light the fire on the bottom or side or top of the sticks?

If the wood sticks are lit on the sides or on the bottoms the wood gas must be forced by the stove to join into the fire. Lighting the entire top of the batch of fuel has the natural advantage that all wood gas passes into flame. Masonry heating stoves have often used this top burning technique to clean up combustion. In each case the same principle applies: 1.) All the wood gas must go into the hot flames and 2.) Be well mixed there with air 3.) For a long enough time for complete combustion to occur.



Diagram of Top Lit UpDraft Stove (TLUD)